State-of-the-art superconducting qubits rely on a limited set of thin-film materials. Expanding their materials palette can improve performance, extend operating regimes, and introducenew functionalities, but conventional thin-film fabrication hinders systematic exploration of new material combinations. Van der Waals (vdW) materials offer a highly modular crystalline platform that facilitates such exploration while enabling gate-tunability, higher-temperature operation, and compact qubit geometries. Yet it remains unknown whether a fully vdW superconducting qubit can support quantum coherence and what mechanisms dominate loss at both low and elevated temperatures in such a device. Here we demonstrate quantum-coherent merged-element transmons made entirely from vdW Josephson junctions. These first-generation, fully crystalline qubits achieve microsecond lifetimes in an ultra-compact footprint without external shunt capacitors. Energy relaxation measurements, together with microwave characterization of vdW capacitors, point to dielectric loss as the dominant relaxation channel up to hundreds of millikelvin. These results establish vdW materials as a viable platform for compact superconducting quantum devices.
We develop an analytic framework to extract circuit parameters and loss tangent from superconducting transmission-line resonators terminated by reactive loads, extending analysis beyondthe perturbative regime. The formulation yields closed-form relations between resonant frequency, participation ratio, and internal quality factor, removing the need for full-wave simulations. We validate the framework through circuit simulations, finite-element modeling, and experimental measurements of van der Waals parallel-plate capacitors, using it to extract the dielectric constant and loss tangent of hexagonal boron nitride. Statistical analysis across multiple reference resonators, together with multimode self-calibration, demonstrates consistent and reproducible extraction of both capacitance and loss tangent in close agreement with literature values. In addition to parameter extraction, the analytic relations provide practical design guidelines for maximizing energy participation ratio in the load and improving the precision of resonator-based material metrology.
The narrow bandgap of semiconductors allows for thick, uniform Josephson junction barriers, potentially enabling reproducible, stable, and compact superconducting qubits. We study verticallystacked van der Waals Josephson junctions with semiconducting weak links, whose crystalline structures and clean interfaces offer a promising platform for quantum devices. We observe robust Josephson coupling across 2–12 nm (3–18 atomic layers) of semiconducting WSe2 and, notably, a crossover from proximity- to tunneling-type behavior with increasing weak link thickness. Building on these results, we fabricate a prototype all-crystalline merged-element transmon qubit with transmon frequency and anharmonicity closely matching design parameters. We demonstrate dispersive coupling between this transmon and a microwave resonator, highlighting the potential of crystalline superconductor-semiconductor structures for compact, tailored superconducting quantum devices.