(Delta phi) with a fixed-depth XY8 dynamical decoupling (DD) scaffold. The feedback optimization is performed offline on a calibrated emulator and the resulting Delta phi* is deployed as pre-calibrated phase compensation on hardware. This represents an „offline closed-loop, online open-loop“ feasibility demonstration. Using an Aer-based emulator calibrated with ibm_fez device parameters, Aurora-DD achieves substantial reductions in mean-squared error of the measured expectation value , yielding 68-97% improvement across phase settings phi = 0.05, 0.10, 0.15, 0.20 over n=30 randomized trials. These large-n emulator results provide statistically stable evidence that the combined effect of XY8 and Delta phi* suppresses both dephasing and systematic phase bias. On real superconducting hardware (ibm_fez), we perform a small-sample (n=3) multi-phase validation campaign. Aurora-DD yields point estimates corresponding to approximately 99.2-99.6% reduction in absolute error relative to a no-DD baseline across all tested phase points. These hardware numbers are reported transparently as feasibility evidence under tight queue and credit constraints. In contrast, the auxiliary Aurora+ZNE branch exhibits instability: shallow two-point ZNE occasionally amplifies calibration inconsistencies and produces large error outliers. We therefore relegate ZNE analysis to the Appendix and position Aurora-DD (without ZNE) as the primary contribution. Overall, the combined results support pre-calibrated Aurora-DD as a practical, stable, and hardware-compatible phase-coherence compensator for NISQ devices in single-qubit settings.
Closed-Loop Phase-Coherence Compensation for Superconducting Qubits Integrated Computational and Hardware Validation of the Aurora Method
We present an emulator-based and hardware feasibility study of Aurora-DD, a phase-coherence compensation method that integrates a sign-based feedback update of a global phase offset