Realization of fast all-microwave CZ gates with a tunable coupler

  1. Shaowei Li,
  2. Daojin Fan,
  3. Ming Gong,
  4. Yangsen Ye,
  5. Xiawei Chen,
  6. Yulin Wu,
  7. Huijie Guan,
  8. Hui Deng,
  9. Hao Rong,
  10. He-Liang Huang,
  11. Chen Zha,
  12. Kai Yan,
  13. Shaojun Guo,
  14. Haoran Qian,
  15. Haibin Zhang,
  16. Fusheng Chen,
  17. Qingling Zhu,
  18. Youwei Zhao,
  19. Shiyu Wang,
  20. Chong Ying,
  21. Sirui Cao,
  22. Jiale Yu,
  23. Futian Liang,
  24. Yu Xu,
  25. Jin Lin,
  26. Cheng Guo,
  27. Lihua Sun,
  28. Na Li,
  29. Lianchen Han,
  30. Cheng-Zhi Peng,
  31. Xiaobo Zhu,
  32. and Jian-Wei Pan
The development of high-fidelity two-qubit quantum gates is essential for digital quantum computing. Here, we propose and realize an all-microwave parametric Controlled-Z (CZ) gates

Realization of high-fidelity CZ gates in extensible superconducting qubits design with a tunable coupler

  1. Yangsen Ye,
  2. Sirui Cao,
  3. Yulin Wu,
  4. Xiawei Chen,
  5. Qingling Zhu,
  6. Shaowei Li,
  7. Fusheng Chen,
  8. Ming Gong,
  9. Chen Zha,
  10. He-Liang Huang,
  11. Youwei Zhao,
  12. Shiyu Wang,
  13. Shaojun Guo,
  14. Haoran Qian,
  15. Futian Liang,
  16. Jin Lin,
  17. Yu Xu,
  18. Cheng Guo,
  19. Lihua Sun,
  20. Na Li,
  21. Hui Deng,
  22. Xiaobo Zhu,
  23. and Jian-Wei Pan
High-fidelity two-qubits gates are essential for the realization of large-scale quantum computation and simulation. Tunable coupler design is used to reduce the problem of parasitic

Observation of thermalization and information scrambling in a superconducting quantum processor

  1. Qingling Zhu,
  2. Zheng-Hang Sun,
  3. Ming Gong,
  4. Fusheng Chen,
  5. Yu-Ran Zhang,
  6. Yulin Wu,
  7. Yangsen Ye,
  8. Chen Zha,
  9. Shaowei Li,
  10. Shaojun Guo,
  11. Haoran Qian,
  12. He-Liang Huang,
  13. Jiale Yu,
  14. Hui Deng,
  15. Hao Rong,
  16. Jin Lin,
  17. Yu Xu,
  18. Lihua Sun,
  19. Cheng Guo,
  20. Na Li,
  21. Futian Liang,
  22. Cheng-Zhi Peng,
  23. Heng Fan,
  24. Xiaobo Zhu,
  25. and Jian-Wei Pan
Understanding various phenomena in non-equilibrium dynamics of closed quantum many-body systems, such as quantum thermalization, information scrambling, and nonergodic dynamics, is

Verification of a resetting protocol for an uncontrolled superconducting qubit

  1. Ming Gong,
  2. Feihu Xu,
  3. Zheng-Da Li,
  4. Zizhu Wang,
  5. Yu-Zhe Zhang,
  6. Yulin Wu,
  7. Shaowei Li,
  8. Youwei Zhao,
  9. Shiyu Wang,
  10. Chen Zha,
  11. Hui Deng,
  12. Zhiguang Yan,
  13. Hao Rong,
  14. Futian Liang,
  15. Jin Lin,
  16. Yu Xu,
  17. Cheng Guo,
  18. Lihua Sun,
  19. Anthony D. Castellano,
  20. Chengzhi Peng,
  21. Yu-Ao Chen,
  22. Xiaobo Zhu,
  23. and Jian-Wei Pan
We experimentally verify the simplest non-trivial case of a quantum resetting protocol with five superconducting qubits, testing it with different types of free evolutions and target-probe

Demonstration of Adiabatic Variational Quantum Computing with a Superconducting Quantum Coprocessor

  1. Ming-Cheng Chen,
  2. Ming Gong,
  3. Xiao-Si Xu,
  4. Xiao Yuan,
  5. Jian-Wen Wang,
  6. Can Wang,
  7. Chong Ying,
  8. Jin Lin,
  9. Yu Xu,
  10. Yulin Wu,
  11. Shiyu Wang,
  12. Hui Deng,
  13. Futian Liang,
  14. Cheng-Zhi Peng,
  15. Simon C. Benjamin,
  16. Xiaobo Zhu,
  17. Chao-Yang Lu,
  18. and Jian-Wei Pan
Adiabatic quantum computing enables the preparation of many-body ground states. This is key for applications in chemistry, materials science, and beyond. Realisation poses major experimental

Genuine 12-qubit entanglement on a superconducting quantum processor

  1. Ming Gong,
  2. Ming-Cheng Chen,
  3. Yarui Zheng,
  4. Shiyu Wang,
  5. Chen Zha,
  6. Hui Deng,
  7. Zhiguang Yan,
  8. Hao Rong,
  9. Yulin Wu,
  10. Shaowei Li,
  11. Fusheng Chen,
  12. Youwei Zhao,
  13. Futian Liang,
  14. Jin Lin,
  15. Yu Xu,
  16. Cheng Guo,
  17. Lihua Sun,
  18. Anthony D. Castellano,
  19. Haohua Wang,
  20. Chengzhi Peng,
  21. Chao-Yang Lu,
  22. Xiaobo Zhu,
  23. and Jian-Wei Pan
We report the preparation and verification of a genuine 12-qubit entanglement in a superconducting processor. The processor that we designed and fabricated has qubits lying on a 1D

Control and Readout Software in Superconducting Quantum Computing

  1. Cheng Guo,
  2. FuTian Liang,
  3. Jin Lin,
  4. Yu Xu,
  5. LiHua Sun,
  6. ShengKai Liao,
  7. ChengZhi Peng,
  8. and WeiYue Liu
Digital-to-analog converter (DAC) and analog-to-digital converter (ADC) as an important part of the superconducting quantum computer are used to control and readout the qubit states.

Ultra-precision DC source for Superconducting Quantum Computer

  1. Futian Liang,
  2. Peng Miao,
  3. Jin Lin,
  4. Yu Xu,
  5. Cheng Guo,
  6. Lihua Sun,
  7. ShengKai Liao,
  8. Ge Jin,
  9. and ChengZhi Peng
The Superconducting Quantum Computing (SQC) is one of the most promising quantum computing techniques. The SQC requires precise control and acquisition to operate the superconducting