mitigate these issues for a transmon-based surface code, without requiring an overhead in terms of hardware or QEC-cycle time as in previous proposals. For data qubits we consider a microwave drive to transfer leakage to the readout resonator, where it quickly decays, ensuring that this negligibly affects the coherence within the computational subspace for realistic system parameters. For ancilla qubits we apply a |1⟩↔|2⟩ π pulse conditioned on the measurement outcome. Using density-matrix simulations of the distance-3 surface code we show that the average leakage lifetime is reduced to almost 1 QEC cycle, even when the LRUs are implemented with limited fidelity. Furthermore, we show that this leads to a significant reduction of the logical error rate. This LRU scheme opens the prospect for near-term scalable QEC demonstrations.
A hardware-efficient leakage-reduction scheme for quantum error correction with superconducting transmon qubits
Leakage outside of the qubit computational subspace poses a threatening challenge to quantum error correction (QEC). We propose a scheme using two leakage-reduction units (LRUs) that