We present the design and experimental characterization of a kinetic-inductance traveling-wave parametric amplifier (KI-TWPA) for sub-GHz frequencies. KI-TWPAs amplify signals throughnonlinear mixing processes supported by the nonlinear kinetic inductance of a superconducting transmission line. The device described here utilizes a compactly meandered TiN microstrip transmission line to achieve the length needed to amplify sub-GHz signals. It is operated in a frequency translating mode where the amplified signal tone is terminated at the output of the amplifier, and the idler tone at approximately 2.5~GHz is brought out of the cryostat. By varying the pump frequency, a gain of up to 22 dB was achieved in a tunable range from about 450 to 850~MHz. Use of TiN as the nonlinear element allows for a reduction of the required pump power by roughly an order of magnitude relative to NbTiN, which has been used for previous KI-TWPA implementations. This amplifier has the potential to enable high-sensitivity and high-speed measurements in a wide range of applications, such as quantum computing, astrophysics, and dark matter detection.
Kinetic inductance traveling-wave parametric amplifiers (KI-TWPA) have a wide instantaneous bandwidth with near quantum-limited sensitivity and a relatively high dynamic range. Becauseof this, they are suitable readout devices for cryogenic detectors and superconducting qubits and have a variety of applications in quantum sensing. This work discusses the design, fabrication, and performance of a KI-TWPA based on four-wave mixing in a NbTiN microstrip transmission line. This device amplifies a signal band from 4 to 8~GHz without contamination from image tones, which are produced in a separate higher frequency band. The 4 – 8~GHz band is commonly used to read out cryogenic detectors, such as microwave kinetic inductance detectors (MKIDs) and Josephson junction-based qubits. We report a measured maximum gain of over 20 dB using four-wave mixing with a 1-dB gain compression point of -58 dBm at 15 dB of gain over that band. The bandwidth and peak gain are tunable by adjusting the pump-tone frequency and power. Using a Y-factor method, we measure an amplifier-added noise of 0.5≤Nadded≤1.5 photons from 4.5 – 8 GHz.