A Parity-Protected Superconductor-Semiconductor Qubit

  1. T. W. Larsen,
  2. M.E. Gershenson,
  3. L. Casparis,
  4. A. Kringhøj,
  5. N. J. Pearson,
  6. R. P. G. McNeil,
  7. F. Kuemmeth,
  8. P. Krogstrup,
  9. K. D. Petersson,
  10. and C. M. Marcus
Coherence of superconducting qubits can be improved by implementing designs that protect the parity of Cooper pairs on superconducting islands. Here, we introduce a parity-protected

Voltage-Controlled Superconducting Quantum Bus

  1. L. Casparis,
  2. N. J. Pearson,
  3. A. Kringhøj,
  4. T. W. Larsen,
  5. F. Kuemmeth,
  6. J. Nygård,
  7. P. Krogstrup,
  8. K. D. Petersson,
  9. and C. M. Marcus
We demonstrate the ability of an epitaxial semiconductor-superconductor nanowire to serve as a field-effect switch to tune a superconducting cavity. Two superconducting gatemon qubits

Anharmonicity of a Gatemon Qubit with a Few-Mode Josephson Junction

  1. A. Kringhøj,
  2. L. Casparis,
  3. M. Hell,
  4. T. W. Larsen,
  5. F. Kuemmeth,
  6. M. Leijnse,
  7. K. Flensberg,
  8. P. Krogstrup,
  9. J. Nygård,
  10. K. D. Petersson,
  11. and C. M. Marcus
Coherent operation of gate-voltage-controlled hybrid transmon qubits (gatemons) based on semiconductor nanowires was recently demonstrated. Here we experimentally investigate the anharmonicity

A Semiconductor Nanowire-Based Superconducting Qubit

  1. T. W. Larsen,
  2. K. D. Petersson,
  3. F. Kuemmeth,
  4. T. S. Jespersen,
  5. P. Krogstrup,
  6. J. Nygard,
  7. and C. M. Marcus
We introduce a hybrid qubit based on a semiconductor nanowire with an epitaxially grown superconductor layer. Josephson energy of the transmon-like device („gatemon“) is