fabrication of advanced, complex devices. We propose to address this gap by automating these low-volume, high-stakes tasks using a robotic arm to improve process control and consistency. As a proof of concept, we deploy this system for the resist development of Josephson junction devices. A statistical comparison of the process repeatability shows the robotic process achieves a resistance spread across chips close to 2%, a significant improvement over the ~7% spread observed from human operators, validating robotics as a solution to eliminate operator-dependent variability and a path towards industrial-level consistency in a research setting.
Robotic chip-scale nanofabrication for superior consistency
Unlike the rigid, high-volume automation found in industry, academic research requires process flexibility that has historically relied on variable manual operations. This hinders the