We study the feasibility of reaching the ultrastrong (USC) and deep-strong coupling (DSC) regimes of light-matter interaction, in particular at resonance condition, with a superconductingcharge qubit, also known as Cooper-Pair box (CPB). We show that by shunting the charge qubit with a high-impedance LC-circuit, one can maximally reach both USC and DSC regimes exceeding the classical upper bound |g|≤ωqωr−−−−√/2 between two harmonic systems with frequencies ωq and ωr. In our case, the fundamental model corresponds to an enhanced quantum Rabi model, which contains a displacement field operator that breaks its internal parity symmetry. Furthermore, we consider a multipartite device consisting of two CPBs ultrastrongly coupled to an oscillator as a mediator and study a quantum state transfer protocol between a pair of transmon qubits, all of them subjected to local incoherent noise channels with realistic parameters. This work opens the door for studying light-matter interactions beyond the quantum Rabi model at extreme coupling strengths, providing a new building block for applications within quantum computation and quantum information processing.
A major challenge in operating multi-qubit quantum processors is to mitigate multi-qubit coherent errors. For superconducting circuits, besides crosstalk originating from imperfectisolation of control lines, dispersive coupling between qubits is a major source of multi-qubit coherent errors. We benchmark phase errors in a controlled-phase gate due to dispersive coupling of either of the qubits involved in the gate to one or more spectator qubits. We measure the associated gate infidelity using quantum process tomography. In addition, we point out that, due to coupling of the gate qubits to a non-computational state during the gate, two-qubit conditional phase errors are enhanced. Our work is important for understanding limits to the fidelity of two-qubit gates with finite on/off ratio in multi-qubit settings.
Semiconductor qubits rely on the control of charge and spin degrees of freedom of electrons or holes confined in quantum dots (QDs). They constitute a promising approach to quantuminformation processing [1, 2], complementary to superconducting qubits [3]. Typically, semiconductor qubit-qubit coupling is short range [1, 2, 4, 5], effectively limiting qubit distance to the spatial extent of the wavefunction of the confined particle, which represents a significant constraint towards scaling to reach dense 1D or 2D arrays of QD qubits. Following the success of circuit quantum eletrodynamics [6], the strong coupling regime between the charge [7, 8] and spin [9, 10, 11] degrees of freedom of electrons confined in semiconducting QDs interacting with individual photons stored in a microwave resonator has recently been achieved. In this letter, we demonstrate coherent coupling between a superconducting transmon qubit and a semiconductor double quantum dot (DQD) charge qubit mediated by virtual microwave photon excitations in a tunable high-impedance SQUID array resonator acting as a quantum bus [12, 13, 14]. The transmon-charge qubit coherent coupling rate (∼21 MHz) exceeds the linewidth of both the transmon (∼0.8 MHz) and the DQD charge (∼3 MHz) qubit. By tuning the qubits into resonance for a controlled amount of time, we observe coherent oscillations between the constituents of this hybrid quantum system. These results enable a new class of experiments exploring the use of the two-qubit interactions mediated by microwave photons to create entangled states between semiconductor and superconducting qubits. The methods and techniques presented here are transferable to QD devices based on other material systems and can be beneficial for spin-based hybrid systems.
As classical computers struggle to keep up with Moore’s law, quantum computing may represent a big step in technology and yield significant improvement over classical computingfor many important tasks. Building a quantum computer, however, is a daunting challenge since it requires good control but also good isolation from the environment to minimize decoherence. It is therefore important to realize quantum gates efficiently, using as few operations as possible, to reduce the amount of required control and operation time and thus improve the quantum state coherence. Here we propose a superconducting circuit for implementing a tunable spin chain consisting of a qutrit (three-level system analogous to spin-1) coupled to two qubits (spin-1/2). Our system can efficiently accomplish various quantum information tasks, including generation of entanglement of the two qubits and conditional three-qubit quantum gates, such as the Toffoli and Fredkin gates, which are universal for reversible classical computations. Furthermore, our system realizes a conditional geometric gate which may be used for holonomic (non-adiabatic) quantum computing. The efficiency, robustness and universality of our circuit makes it a promising candidate to serve as a building block for larger spin networks capable of performing involved quantum computational tasks.
Transistors play a vital role in classical computers, and their quantum mechanical counterparts could potentially be as important in quantum computers. Where a classical transistoris operated as a switch that either blocks or allows an electric current, the quantum transistor should operate on quantum information. In terms of a spin model the in-going quantum information is an arbitrary qubit state (spin-1/2 state). In this paper, we derive a model of four qubits with Heisenberg interactions that works as a quantum spin transistor, i.e. a system with perfect state transfer or perfect blockade depending on the state of two gate qubits. We propose a realistic implementation of the model using state-of-the-art superconducting circuits. Finally, we demonstrate that our proposal operates with high-fidelity under realistic decoherence, and without fine-tuning of any of the parameters.
We have constructed a microwave detector based on the voltage switching of an underdamped Josephson junction, that is positioned at a current antinode of a {lambda}/4 coplanar waveguideresonator. By measuring the switching current and the transmission through a waveguide capacitively coupled to the resonator at different drive frequencies and temperatures we are able to fully characterize the system and assess its detection efficiency and sensitivity. Testing the detector by applying a classical microwave field with the strength of a single photon yielded a sensitivity parameter of 0.5 in qualitative agreement with theoretical calculations.