We present a purely traveling-wave parametric amplifier (TWPA) using an inverted NbTiN microstrip and amorphous Silicon dielectric. Through dispersion engineering, we are able to obtain 50 Ω impedance matching and suppress undesired parametric processes while phase matching the three-wave-mixing amplification across a large range of frequencies. The result is a broadband amplifier operating with 20 dB gain and quantum-limited noise performance at 20 mK. At the single frequency where the amplifier is phase sensitive, we further demonstrate 8 dB of vacuum noise squeezing.
Demonstration of a Quantum Noise Limited Traveling-Wave Parametric Amplifier
Recent progress in quantum computing and the development of novel detector technologies for astrophysics is driving the need for high-gain, broadband, and quantum-limited amplifiers.