The number of excitations in a large quantum system (harmonic oscillator or qudit) can be measured in a quantum non demolition manner using a dispersively coupled qubit. It typicallyrequires a series of qubit pulses that encode various binary questions about the photon number. Recently, a method based on the fluorescence measurement of a qubit driven by a train of identical pulses was introduced to track the photon number in a cavity, hence simplifying its monitoring and raising interesting questions about the measurement backaction of this scheme. A first realization with superconducting circuits demonstrated how the average number of photons could be measured in this way. Here we present an experiment that reaches single shot photocounting and number tracking owing to a cavity decay rate 4 orders of magnitude smaller than both the dispersive coupling rate and the qubit emission rate. An innovative notch filter and pogo-pin based galvanic contact makes possible these seemingly incompatible features. The qubit dynamics under the pulse train is characterized. We observe quantum jumps by monitoring the photon number via the qubit fluorescence as photons leave the cavity one at a time. Besides, we extract the measurement rate and induced dephasing rate and compare them to theoretical models. Our method could be applied to quantum error correction protocols on bosonic codes or qudits.
Cat qubits, for which logical |0⟩ and |1⟩ are coherent states |±α⟩ of a harmonic mode, offer a promising route towards quantum error correction. Using dissipation to our advantageso that photon pairs of the harmonic mode are exchanged with single photons of its environment, it is possible to stabilize the logical states and exponentially increase the bit-flip time of the cat qubit with the photon number |α|2. Large two-photon dissipation rate κ2 ensures fast qubit manipulation and short error correction cycles, which are instrumental to correct the remaining phase-flip errors in a repetition code of cat qubits. Here we introduce and operate an autoparametric superconducting circuit that couples a mode containing the cat qubit to a lossy mode whose frequency is set at twice that of the cat mode. This passive coupling does not require a parametric pump and reaches a rate κ2/2π≈2 MHz. With such a strong two-photon dissipation, bit-flip errors of the autoparametric cat qubit are prevented for a characteristic time up to 0.3 s with only a mild impact on phase-flip errors. Besides, we illustrate how the phase of a quantum superposition between |α⟩ and |−α⟩ can be arbitrarily changed by driving the harmonic mode while keeping the engineered dissipation active.
Cavity quantum electrodynamics (QED) uses a cavity to engineer the mode structure of the vacuum electromagnetic field such as to enhance the interaction between light and matter. Exploitingthese ideas in solid-state systems has lead to circuit QED which has emerged as a valuable tool to explore the rich physics of quantum optics and as a platform for quantum computation. Here we introduce a simple approach to further engineer the light-matter interaction in a driven cavity by controllably decoupling a qubit from the cavity’s photon population, effectively cloaking the qubit from the cavity. This is realized by driving the qubit with an external tone tailored to destructively interfere with the cavity field, leaving the qubit to interact with a cavity which appears to be in the vacuum state. Our experiment demonstrates how qubit cloaking can be exploited to cancel ac-Stark shift and measurement-induced dephasing, and to accelerate qubit readout.
Qubits are physical, a quantum gate thus not only acts on the information carried by the qubit but also on its energy. What is then the corresponding flow of energy between the qubitand the controller that implements the gate? Here we exploit a superconducting platform to answer this question in the case of a quantum gate realized by a resonant drive field. During the gate, the superconducting qubit becomes entangled with the microwave drive pulse so that there is a quantum superposition between energy flows. We measure the energy change in the drive field conditioned on the outcome of a projective qubit measurement. We demonstrate that the drive’s energy change associated with the measurement backaction can exceed by far the energy that can be extracted by the qubit. This can be understood by considering the qubit as a weak measurement apparatus of the driving field.
Detectors of propagating microwave photons have recently been realized using superconducting circuits. However a number-resolved photocounter is still missing. In this letter, we demonstratea single-shot counter for propagating microwave photons that can resolve up to 3 photons. It is based on a pumped Josephson Ring Modulator that can catch an arbitrary propagating mode by frequency conversion and store its quantum state in a stationary memory mode. A transmon qubit then counts the number of photons in the memory mode using a series of binary questions. Using measurement based feedback, the number of questions is minimal and scales logarithmically with the maximal number of photons. The detector features a detection efficiency of 0.96±0.04, and a dark count probability of 0.030±0.002 for an average dead time of 4.5 μs. To maximize its performance, the device is first used as an \emph{in situ} waveform detector from which an optimal pump is computed and applied. Depending on the number of incoming photons, the detector succeeds with a probability that ranges from 56% to 99%.
The evolution of quantum systems under measurement is a central aspect of quantum mechanics. When a two level system — a qubit — is used as a probe of a larger system, itnaturally leads to answering a single yes-no question about the system state followed by its corresponding quantum collapse. Here, we report an experiment where a single superconducting qubit is counter-intuitively able to answer not a single but nine yes-no questions about the number of photons in a microwave resonator at the same time. The key ingredients are twofold. First, we exploit the fact that observing the color of a qubit carries additional information to the conventional readout of its state. The qubit-system interaction is hence designed so that the qubit color encodes the number of photons in the resonator. Secondly, we multiplex the qubit color observation by recording how the qubit reflects a frequency comb. Interestingly the amount of extracted information reaches a maximum at a finite drive amplitude of the comb. We evidence it by direct Wigner tomography of the quantum state of the resonator. Our experiment unleashes the full potential of quantum meters by bringing the measurement process in the frequency domain.
A quantum system interacts with its environment, if ever so slightly, no matter how much care is put into isolating it. As a consequence, quantum bits (qubits) undergo errors, puttingdauntingly difficult constraints on the hardware suitable for quantum computation. New strategies are emerging to circumvent this problem by encoding a qubit non-locally across the phase space of a physical system. Since most sources of decoherence are due to local fluctuations, the foundational promise is to exponentially suppress errors by increasing a measure of this non-locality. Prominent examples are topological qubits which delocalize quantum information over real space and where spatial extent measures non-locality. In this work, we encode a qubit in the field quadrature space of a superconducting resonator endowed with a special mechanism that dissipates photons in pairs. This process pins down two computational states to separate locations in phase space. As we increase this separation, we measure an exponential decrease of the bit-flip rate while only linearly increasing the phase-flip rate. Since bit-flips are continuously and autonomously corrected at the single qubit level, only phase-flips are left to be corrected via a one-dimensional quantum error correction code. This exponential scaling demonstrates that resonators with non-linear dissipation are promising building blocks for universal fault-tolerant quantum computation with drastically reduced hardware overhead.
We present a superconducting device that realizes the sequential measurement of a transmon qubit. The unitary evolution between system and probe is indeed separated in time and spacefrom the measurement of the probe itself. The device disables common limitations of dispersive readout such as Purcell effect or transients in the cavity mode by tuning the coupling to the measurement channel on demand. The probe is initially stored in a memory mode and coupled to the qubit until a microwave pump releases it into an output line in a characteristic time as low as 10 ns, which is 400 times shorter than the memory lifetime. The Wigner function of the memory allows us to characterize the non-Gaussian nature of the probe and its dynamics. A direct measurement of the released probe field quadratures demonstrates a readout fidelity of 97.5 % in a total measurement time of 220 ns.
Strong microwave drives, referred to as pumps, are widely applied to superconducting circuits incorporating Josephson junctions in order to induce couplings between electromagneticmodes. This offers a variety of applications, from quantum-limited amplification, to quantum state and manifold stabilization. These couplings scale with the pump power, therefore, seeking stronger couplings requires a detailed understanding of the behavior of such circuits in the presence of stronger pumps. In this work, we probe the dynamics of a transmon qubit in a 3D cavity, for various pump powers and frequencies. For all pump frequencies, we find a critical pump power above which the transmon is driven into highly excited states, beyond the first seven states which we individually resolve through cavity spectroscopy. This observation is compatible with our theory describing the escape of the transmon state out of its Josephson potential well, into states resembling those of a free particle which does not induce any non-linear couplings.
This paper provides an overview of the first experimental realizations of quantum-mechanical Maxwell’s demons based on superconducting circuits. The principal results of theseexperiments are recalled and put into context. We highlight the versatility offered by superconducting circuits for studying quantum thermodynamics.