(three-level systems). To evaluate and compare the performance of such emerging quantum hardware it is essential to have robust benchmarking methods suitable for a higher-dimensional Hilbert space. We demonstrate extensions of industry standard Randomized Benchmarking (RB) protocols, developed and used extensively for qubits, suitable for ternary quantum logic. Using a superconducting five-qutrit processor, we find a single-qutrit gate infidelity as low as 2.38×10−3. Through interleaved RB, we find that this qutrit gate error is largely limited by the native (qubit-like) gate fidelity, and employ simultaneous RB to fully characterize cross-talk errors. Finally, we apply cycle benchmarking to a two-qutrit CSUM gate and obtain a two-qutrit process fidelity of 0.82. Our results demonstrate a RB-based tool to characterize the obtain overall performance of a qutrit processor, and a general approach to diagnose control errors in future qudit hardware.
Qutrit randomized benchmarking
Ternary quantum processors offer significant computational advantages over conventional qubit technologies, leveraging the encoding and processing of quantum information in qutrits