The number of excitations in a large quantum system (harmonic oscillator or qudit) can be measured in a quantum non demolition manner using a dispersively coupled qubit. It typicallyrequires a series of qubit pulses that encode various binary questions about the photon number. Recently, a method based on the fluorescence measurement of a qubit driven by a train of identical pulses was introduced to track the photon number in a cavity, hence simplifying its monitoring and raising interesting questions about the measurement backaction of this scheme. A first realization with superconducting circuits demonstrated how the average number of photons could be measured in this way. Here we present an experiment that reaches single shot photocounting and number tracking owing to a cavity decay rate 4 orders of magnitude smaller than both the dispersive coupling rate and the qubit emission rate. An innovative notch filter and pogo-pin based galvanic contact makes possible these seemingly incompatible features. The qubit dynamics under the pulse train is characterized. We observe quantum jumps by monitoring the photon number via the qubit fluorescence as photons leave the cavity one at a time. Besides, we extract the measurement rate and induced dephasing rate and compare them to theoretical models. Our method could be applied to quantum error correction protocols on bosonic codes or qudits.
Cat qubits, for which logical |0⟩ and |1⟩ are coherent states |±α⟩ of a harmonic mode, offer a promising route towards quantum error correction. Using dissipation to our advantageso that photon pairs of the harmonic mode are exchanged with single photons of its environment, it is possible to stabilize the logical states and exponentially increase the bit-flip time of the cat qubit with the photon number |α|2. Large two-photon dissipation rate κ2 ensures fast qubit manipulation and short error correction cycles, which are instrumental to correct the remaining phase-flip errors in a repetition code of cat qubits. Here we introduce and operate an autoparametric superconducting circuit that couples a mode containing the cat qubit to a lossy mode whose frequency is set at twice that of the cat mode. This passive coupling does not require a parametric pump and reaches a rate κ2/2π≈2 MHz. With such a strong two-photon dissipation, bit-flip errors of the autoparametric cat qubit are prevented for a characteristic time up to 0.3 s with only a mild impact on phase-flip errors. Besides, we illustrate how the phase of a quantum superposition between |α⟩ and |−α⟩ can be arbitrarily changed by driving the harmonic mode while keeping the engineered dissipation active.
The evolution of quantum systems under measurement is a central aspect of quantum mechanics. When a two level system — a qubit — is used as a probe of a larger system, itnaturally leads to answering a single yes-no question about the system state followed by its corresponding quantum collapse. Here, we report an experiment where a single superconducting qubit is counter-intuitively able to answer not a single but nine yes-no questions about the number of photons in a microwave resonator at the same time. The key ingredients are twofold. First, we exploit the fact that observing the color of a qubit carries additional information to the conventional readout of its state. The qubit-system interaction is hence designed so that the qubit color encodes the number of photons in the resonator. Secondly, we multiplex the qubit color observation by recording how the qubit reflects a frequency comb. Interestingly the amount of extracted information reaches a maximum at a finite drive amplitude of the comb. We evidence it by direct Wigner tomography of the quantum state of the resonator. Our experiment unleashes the full potential of quantum meters by bringing the measurement process in the frequency domain.