suppressed bit-flip error rate as the distance in phase-space between their basis states increases, incurring only a linear increase in phase-flip rate. This property substantially reduces the number of qubits required for fault-tolerant quantum computation. Here, we implement a squeezing deformation of the cat qubit basis states, further extending the bit-flip time while minimally affecting the phase-flip rate. We demonstrate a steep reduction in the bit-flip error rate with increasing mean photon number, characterized by a scaling exponent γ=4.3, rising by a factor of 74 per added photon. Specifically, we measure bit-flip times of 22 seconds for a phase-flip time of 1.3 μs in a squeezed cat qubit with an average photon number n¯=4.1, a 160-fold improvement in bit-flip time compared to a standard cat. Moreover, we demonstrate a two-fold reduction in Z-gate infidelity, with an estimated phase-flip probability of ϵX=0.085 and a bit-flip probability of ϵZ=2.65⋅10−9 which confirms the gate bias-preserving property. This simple yet effective technique enhances cat qubit performances without requiring design modification, moving multi-cat architectures closer to fault-tolerant quantum computation.
Enhancing dissipative cat qubit protection by squeezing
Dissipative cat-qubits are a promising architecture for quantum processors due to their built-in quantum error correction. By leveraging two-photon stabilization, they achieve an exponentially