Weakly Flux-Tunable Superconducting Qubit
Flux-tunable qubits are a useful resource for superconducting quantum processors. They can be used to perform cPhase gates, facilitate fast reset protocols, avoid qubit-frequency collisions in large processors, and enable certain fast readout schemes. However, flux-tunable qubits suffer from a trade-off between their tunability range and sensitivity to flux noise. Optimizing this trade-off is particularly important for enabling fast, high-fidelity, all-microwave cross-resonance gates in large, high-coherence processors. This is mainly because cross-resonance gates set stringent conditions on the frequency landscape of neighboring qubits, which are difficult to satisfy with non-tunable transmons due to their relatively large fabrication imprecision. To solve this problem, we realize a coherent, flux-tunable, transmon-like qubit, which exhibits a frequency tunability range as small as 43 MHz, and whose frequency, anharmonicity and tunability range are set by a few experimentally achievable design parameters. Such a weakly tunable qubit is useful for avoiding frequency collisions in a large lattice while limiting its susceptibility to flux noise.