Tunable superconducting two-chip lumped element resonator
We have fabricated and investigated a stacked two-chip device, consisting of a lumped element resonator on one chip, which is side-coupled to a coplanar waveguide transmission line on a second chip. We present a full model to predict the behavior of the device dependent on the position of the lumped element resonator with respect to the transmission line. We identify different regimes, in which the device can be operated. One of them can be used to tune the coupling between the two subsystems. Another regime enables frequency tunability of the device, without leaving the over-coupled limit for internal quality factors of about 10^4, while in the last regime the resonator properties are insensitive against small variations of the position. Finally, we have measured the transmission characteristics of the resonator for different positions, demonstrating a good agreement with the model.