The Optimization of Flux Trajectories for the Adiabatic Controlled-Z Gate on Split-Tunable Transmons
In a system of two tunable-frequency qubits, it is well-known that adiabatic tuning into strong coupling-interaction regions between the qubit subspace and the rest of the Hilbert space can be used to generate an effective controlled Z rotation. We address the problem of determining a preferable adiabatic trajectory for which to tune the qubit frequency along, and apply this to the flux-tunable transmon model. The especially minimally anharmonic nature of these quantum processors makes them good candidates for qubit control using non-computational states, as long as higher-level leakage is properly addressed. While the statement of this method has occurred multiple times in literature, there has been little discussion of which trajectories may be used. We present a generalized method for optimizing parameterized families of possible flux trajectories and provide examples of use on five test families of one and two parameters.