The nature of the Lamb shift in weakly-anharmonic atoms: from normal mode splitting to quantum fluctuations
When a two level system (TLS) is coupled to an electromagnetic resonator, its transition frequency changes in response to the quantum vacuum fluctuations of the electromagnetic field, a phenomenon known as the Lamb shift. Remarkably, by replacing the TLS by a harmonic oscillator, normal mode splitting leads to a similar shift, despite its completely classical origin. In a weakly-anharmonic system, lying in between the harmonic oscillator and a TLS, the origins of such shifts can be unclear. An example of such a system is the transmon qubit in a typical circuit quantum electrodynamics setting. Although often referred to as a Lamb shift, it cannot originate purely from vacuum fluctuations since in the limit of zero anharmonicity, the system becomes classical. Here, we treat normal-mode splitting separately from quantum effects in the Hamiltonian of a weakly-anharmonic system, providing a framework for understanding the extent to which the frequency shift can be attributed to quantum fluctuations.