Stochastic modeling of superconducting qudits in the dispersive regime
The field of superconducting quantum computing, based on Josephson junctions, has recently seen remarkable strides in scaling the number of logical qubits. In particular, the fidelities of one- and two-qubit gates have reached the breakeven point with the novel error mitigation and correction methods. Parallel to these advances is the effort to expand the Hilbert space within a single junction or device by employing high-dimensional qubits, otherwise known as qudits. Research has demonstrated the possibility of driving higher-order transitions in a transmon or designing innovative multimode superconducting circuits, termed multimons. These advances can significantly expand the computational basis while simplifying the interconnects in a large-scale quantum processor. In this work we extend the measurement theory of a conventional superconducting qubit to that of a qudit, focusing on modeling the dispersive quadrature measurement in an open quantum system. Under the Markov assumption, the qudit Lindblad and stochastic master equations are formulated and analyzed; in addition, both the ensemble-averaged and the quantum-jump approach of decoherence analysis are detailed with analytical and numerical comparisons. We verify our stochastic model with a series of experimental results on a transmon-type qutrit, verifying the validity of our high-dimensional formalism.