Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble
We propose a multi-mode quantum memory protocol able to store the quantum
state of the field in a microwave resonator into an ensemble of electronic
spins. The stored information is protected against inhomogeneous broadening of
the spin ensemble by spin-echo techniques resulting in memory times orders of
magnitude longer than previously achieved. By calculating the evolution of the
first and second moments of the spin-cavity system variables for realistic
experimental parameters, we show that a memory based on NV center spins in
diamond can store a qubit encoded on the |0> and |1> Fock states of the field
with 80% fidelity.