Quantifying Trapped Magnetic Vortex Losses in Niobium Resonators at mK Temperatures

  1. D. Bafia,
  2. B. Abdisatarov,
  3. R. Pilipenko,
  4. Y. Lu,
  5. G. Eremeev,
  6. A. Romanenko,
  7. and A. Grassellino
Trapped magnetic vortices in niobium can introduce microwave losses in superconducting devices, affecting both niobium-based qubits and resonators. While our group has extensively studied this problem at temperatures above 1~K, in this study we quantify for the first time the losses driven by magnetic vortices for niobium-based quantum devices operating down to millikelvin temperature, and in the low photon counts regime. By cooling a single interface system a 3-D niobium superconducting cavity in a dilution refrigerator through the superconducting transition temperature in controlled levels of magnetic fields, we isolate the flux-induced losses and quantify the added surface resistance per unit of trapped magnetic flux. Our findings indicate that magnetic flux introduces approximately 2~nΩ/mG at 10~mK and at 6~GHz in high RRR niobium. We find that the decay rate of a 6~GHz niobium cavity at 10~mK which contains a native niobium pentoxide will be dominated by the TLS oxide losses until vortices begin to impact T1 for trapped magnetic field (Btrap) levels of >100~mG. In the absence of the niobium pentoxide, Btrap=~10~mG limits Q0∼~10\textsuperscript{10}, or T1∼~350~ms, highlighting the importance of magnetic shielding and magnetic hygiene in enabling T1>~1~s. We observe that the flux-induced resistance decreases with temperature-yet remains largely field-independent, qualitatively explained by thermal activation of vortices in the flux-flow regime. We present a phenomenological model which captures the salient experimental observations. Scaling our findings to typical transmon qubit dimensions suggests that these 2-D structures could be robust against vortex dissipation up to several hundreds~mG. We are directly addressing vortex losses in transmon qubits made with low RRR Nb films in a separate experimental study.

leave comment