Performing SU(d) operations and rudimentary algorithms in a superconducting transmon qudit for d=3 and d=4
Quantum computation architecture based on d-level systems, or qudits, has attracted considerable attention recently due to their enlarged Hilbert space. Extensive theoretical and experimental studies have addressed aspects of algorithms and benchmarking techniques for qudit-based quantum computation and quantum information processing. Here, we report a physical realization of qudit with upto 4 embedded levels in a superconducting transmon, demonstrating high-fidelity initialization, manipulation, and simultaneous multi-level readout. In addition to constructing SU(d) operations and benchmarking protocols for quantum state tomography, quantum process tomography, and randomized benchmarking etc, we experimentally carry out these operations for d=3 and d=4. Moreover, we perform prototypical quantum algorithms and observe outcomes consistent with expectations. Our work will hopefully stimulate further research interest in developing manipulation protocols and efficient applications for quantum processors with qudits.