Non-degenerate parametric resonance in tunable superconducting cavity
We develop a theory for non-degenerate parametric resonance in a tunable superconducting cavity. We focus on nonlinear effects that are caused by nonlinear Josephson elements connected to the cavity. We analyze parametric amplification in a strong nonlinear regime at the parametric instability threshold, and calculate maximum gain values. Above the threshold, in the parametric oscillator regime the linear cavity response diverges at the oscillator frequency at all pump strengths. We show that this divergence is related to the continuous degeneracy of the free oscillator state with respect to the phase. Applying on-resonance input lifts the degeneracy and removes the divergence. We also investigate the quantum noise squeezing. It is shown that in the strong amplification regime the noise undergoes four-mode squeezing, and that in this regime the output signal to noise ratio can significantly exceed the input value. We also analyze the intermode frequency conversion and identify parameters at which full conversion is achieved.