Microwave multimode memory with an Er3+:Y2SiO5 spin ensemble
Interfacing photonic and solid-state qubits within a hybrid quantum architecture offers a promising route towards large scale distributed quantum computing. In that respect, hybrid quantum systems combining circuit QED with ions doped into solids are an attractive platform. There, the ions serve as coherent memory elements and reversible conversion elements of microwave to optical qubits. Among many possible spin-doped solids, erbium ions offer the unique opportunity of a coherent conversion of microwave photons into the telecom C-band at 1.54μm employed for long distance communication. In our work, we perform a time-resolved electron spin resonance study of an Er3+:Y2SiO5 spin ensemble at milli-Kelvin temperatures and demonstrate multimode storage and retrieval of up to 16 coherent microwave pulses. The memory efficiency is measured to be 10−4 at the coherence time of T2=5.6μs.