Microwave-controlled generation of shaped single photons in circuit quantum electrodynamics
Coherent generation of single photons with waveforms of a given shape plays an important role in many protocols for quantum information exchange between distant quantum bits. Here we create shaped microwave photons in a superconducting system consisting of a transmon circuit coupled to a transmission line resonator. Using the third level of the transmon, we exploit a second-order transition induced by a modulated microwave drive to controllably transfer an excitation to the resonator from which it is emitted into a transmission line as a travelling photon. We demonstrate the single-photon nature of the emitted field and the ability to generate photons with a controlled amplitude and phase. In contrast to similar schemes, the presented one requires only a single control line, allowing for a simple implementation with fixed-frequency qubits.