Implementing universal nonadiabatic holonomic quantum gates with transmons
Geometric phases are well known to be noise-resilient in quantum evolutions/operations. Holonomic quantum gates provide us with a robust way towards universal quantum computation, as these quantum gates are actually induced by nonabelian geometric phases. Here we propose and elaborate how to efficiently implement universal nonadiabatic holonomic quantum gates on simpler superconducting circuits, with a single transmon serving as a qubit. In our proposal, an arbitrary single-qubit holonomic gate can be realized in a single-loop scenario, by varying the amplitudes and phase difference of two microwave fields resonantly coupled to a transmon, while nontrivial two-qubit holonomic gates may be generated with a transmission-line resonator being simultaneously coupled to the two target transmons in an effective resonant way. Moreover, our scenario may readily be scaled up to a two-dimensional lattice configuration, which is able to support large scalable quantum computation, paving the way for practically implementing universal nonadiabatic holonomic quantum computation with superconducting circuits.