Implementation of low-loss superinductances for quantum circuits
The simultaneous suppression of charge fluctuations and offsets is crucial
for preserving quantum coherence in devices exploiting large quantum
fluctuations of the superconducting phase. This requires an environment with
both extremely low DC and high RF impedance. Such an environment is provided by
a superinductance, defined as a zero DC resistance inductance whose impedance
exceeds the resistance quantum $R_Q = h/(2e)^2 simeq 6.5 mathrm{kOmega}$ at
frequencies of interest (1 – 10 GHz). In addition, the superinductance must
have as little dissipation as possible, and possess a self-resonant frequency
well above frequencies of interest. The kinetic inductance of an array of
Josephson junctions is an ideal candidate to implement the superinductance
provided its phase slip rate is sufficiently low. We successfully implemented
such an array using large Josephson junctions ($E_J >> E_C$), and measured
internal losses less than 20 ppm, self-resonant frequencies greater than 10
GHz, and phase slip rates less than 1 mHz.