Hot non-equilibrium quasiparticles in transmon qubits
Non-equilibrium quasiparticle excitations degrade the performance of a variety of superconducting circuits. Understanding the energy distribution of these quasiparticles will yield insight into their generation mechanisms, the limitations they impose on superconducting devices, and how to efficiently mitigate quasiparticle-induced qubit decoherence. To probe this energy distribution, we directly correlate qubit transitions with charge-parity switches in an offset-charge-sensitive transmon qubit, and find that quasiparticle-induced excitation events are the dominant mechanism behind the residual excited-state population in our samples. The observed quasiparticle distribution would limit T1 to ≈200 μs, which indicates that quasiparticle loss in our devices is on equal footing with all other loss mechanisms. Furthermore, the measured rate of quasiparticle-induced excitation events is greater than that of relaxation events, which signifies that the quasiparticles are more energetic than would be predicted from a thermal distribution describing their apparent density.