Highly controllable qubit-bath coupling based on a sequence of resonators
Combating the detrimental effects of noise remains a major challenge in realizing a scalable quantum computer. To help to address this challenge, we introduce a model realizing a controllable qubit-bath coupling using a sequence of LC resonators. The operating principle is similar to that of a recently proposed coplanar-waveguide cavity (CPW) system, for which our work introduces a complementary and convenient experimental realization. The lumped-element model utilized here provides an easily accessible theoretical description. We present analytical solutions for some experimentally feasible parameter regimes and study the control mechanism. Finally, we introduce a mapping between our model and the recent CPW system.