Heralded state preparation in a superconducting qubit
We demonstrate high-fidelity, quantum nondemolition, single-shot readout of a
superconducting flux qubit in which the pointer state distributions can be
resolved to below one part in 1000. In the weak excitation regime, continuous
measurement permits the use of heralding to ensure initialization to a fiducial
state, such as the ground state. This procedure boosts readout fidelity to
93.9% by suppressing errors due to spurious thermal population. Furthermore,
heralding potentially enables a simple, fast qubit reset protocol without
changing the system parameters to induce Purcell relaxation.