Entanglement dynamics in superconducting qubits affected by local bistable impurities
We study the entanglement dynamics for two independent superconducting qubits each affected by a bistable impurity generating random telegraph noise (RTN) at pure dephasing. The relevant parameter is the ratio g between qubit-RTN coupling strength and RTN switching rate, that captures the physics of the crossover between Markovian and non-Markovian features of the dynamics. For identical qubit-RTN subsystems, a threshold value gth of the crossover parameter separates exponential decay and onset of revivals; different qualitative behaviors also show up by changing the initial conditions of the RTN. We moreover show that, for different qubit-RTN subsystems, when both qubits are very strongly coupled to the RTN an increase in entanglement revival amplitude may occur during the dynamics.