Efficient two-qutrit gates in superconducting circuits using parametric coupling
Recently, significant progress has been made in the demonstration of single qutrit and coupled qutrit gates with superconducting circuits. Coupled qutrit gates have significantly lower fidelity than single qutrit gates, owing to long implementation times. We present a protocol to implement the CZ universal gate for two qutrits based on a decomposition involving two partial state swaps and local operations. The partial state swaps can be implemented effectively using parametric coupling, which is fast and has the advantage of frequency selectivity. We perform a detailed analysis of this protocol in a system consisting of two fixed-frequency transmons coupled by a flux-tunable transmon. The application of an AC flux in the tunable transmon controls the parametric gates. This protocol has the potential to lead to fast and scalable two-qutrit gates in superconducting circuit architectures.