Effects of device geometry and material properties on dielectric losses in superconducting coplanar-waveguide resonators
Superconducting coplanar-waveguide (CPW) resonators are one of the key devices in circuit quantum electrodynamics (cQED). Their performance can be limited by dielectric losses in the substrate and in the material interfaces. Reliable modeling is required to aid in the design of low-loss CPW structures for cQED. We analyze the geometric dependence of the dielectric losses in CPW structures using finite-element modeling of the participation ratios of the lossy regions. In a practical scenario, uncertainties in the the dielectric constants and loss tangents of these regions introduce uncertainties in the theoretically predicted participation ratios. We present a method for combining loss simulations with measurements of two-level-system-limited quality factors and resonance frequencies of CPW resonators. Namely, we solve an inverse problem to find optimal model parameters producing the measured values. High quality factors are obtainable by properly designing the cross-sectional geometries of the CPW structures, but more accurate modeling and design methods for low-loss CPW resonators are called for major future improvements. Our nonlinear optimization methodology is a step in this direction.