Direct spectrum analysis using a threshold detector with application to a superconducting circuit
We introduce a new and quantitative theoretical framework for noise spectral analysis using a threshold detector, which is then applied to a superconducting device: the Cavity Bifurcation Amplifier (CBA). We show that this new framework provides direct access to the environmental noise spectrum with a sensitivity approaching the standard quantum limit of weak continuous measurements. In addition, the accessible frequency range of the spectrum is, in principle, limited only by the ring down time of the resonator. This on-chip noise detector is non-dissipative and works with low probing powers, allowing it to be operated at low temperatures (T<10mK). We exploit this technique for measuring the frequency fluctuations of the CBA and find a low frequency noise with an amplitude and spectrum compatible with a dielectric origin.