Deterministic entanglement swapping in a superconducting circuit
Entanglement swapping allows two particles that have never been coupled directly or indirectly to be nonlocally correlated. Besides fundamental interest, this procedure has applications in complex entanglement manipulation and quantum communication. Entanglement swapping for qubits has been demonstrated in optical experiments, but where the process was conditional on detection of preset photon coincidence events, which succeeded with only a small probability. Here we report an unconditional entanglement swapping experiment with superconducting qubits. Using controllable qubit-qubit couplings mediated by a resonator, we prepare two highly entangled qubit pairs and then perform the Bell state measurement on two qubits coming from different entangled pairs, projecting the remaining two qubits to one of four Bell states. The measured concurrences for these Bell states are above 0.75,demonstrating the quantum nature of entanglement swapping. With this setup, we further demonstrate delayed-choice entanglement swapping, confirming whether two qubits behaved as in an entangled state or as in a separate state is determined by a later choice of the type of measurement on their partners. This is the first demonstration of entanglement-separability duality in a deterministic way, closing the detection loophole the previous experiments suffer from.