Coupling carbon nanotube mechanics to a superconducting circuit
The quantum behaviour of mechanical resonators is a new and emerging field
driven by recent experiments reaching the quantum ground state. The high
frequency, small mass, and large quality-factor of carbon nanotube resonators
make them attractive for quantum nanomechanical applications. A common element
in experiments achieving the resonator ground state is a second quantum system,
such as coherent photons or superconducting device, coupled to the resonators
motion. For nanotubes, however, this is a challenge due to their small size.
Here, we couple a carbon nanoelectromechanical (NEMS) device to a
superconducting circuit. Suspended carbon nanotubes act as both superconducting
junctions and moving elements in a Superconducting Quantum Interference Device
(SQUID). We observe a strong modulation of the flux through the SQUID from
displacements of the nanotube. Incorporating this SQUID into superconducting
resonators and qubits should enable the detection and manipulation of nanotube
mechanical quantum states at the single-phonon level.