Concurrent Remote Entanglement with Quantum Error Correction
Remote entanglement of distant, non-interacting quantum entities is a key primitive for quantum information processing. We present a new protocol to remotely entangle two stationary qubits by first entangling them with propagating ancilla qubits and then performing a joint two-qubit measurement on the ancillas. Subsequently, single-qubit measurements are performed on each of the ancillas. We describe two continuous variable implementations of the protocol using propagating microwave modes. The first implementation uses propagating Schro¨dinger cat-states as the flying ancilla qubits, a joint-photon-number-modulo-2 measurement of the propagating modes for the two-qubit measurement and homodyne detections as the final single-qubit measurements. The presence of inefficiencies in realistic quantum systems limit the success-rate of generating high fidelity Bell-states. This motivates us to propose a second continuous variable implementation, where we use quantum error correction to suppress the decoherence due to photon loss to first order. To that end, we encode the ancilla qubits in superpositions of Schr\“odinger cat states of a given photon-number-parity, use a joint-photon-number-modulo-4 measurement as the two-qubit measurement and homodyne detections as the final single-qubit measurements. We demonstrate the resilience of our quantum-error-correcting remote entanglement scheme to imperfections. Further, we describe a modification of our error-correcting scheme by incorporating additional individual photon-number-modulo-2 measurements of the ancilla modes to improve the success-rate of generating high-fidelity Bell-states. Our protocols can be straightforwardly implemented in state-of-the-art superconducting circuit-QED systems.