Computational Role of Collective Tunneling in a Quantum Annealer
Quantum tunneling is a phenomenon in which a quantum state traverses energy barriers above the energy of the state itself. Tunneling has been hypothesized as an advantageous physical resource for optimization. Here we present the first experimental evidence of a computational role of multiqubit quantum tunneling in the evolution of a programmable quantum annealer. We develop a theoretical model based on a NIBA Quantum Master Equation to describe the multiqubit dissipative tunneling effects under the complex noise characteristics of such quantum devices. We start by considering a computational primitive, the simplest non-convex optimization problem consisting of just one global and one local minimum. The quantum evolutions enable tunneling to the global minimum while the corresponding classical paths are trapped in a false minimum. In our study the non-convex potentials are realized by frustrated networks of qubit clusters with strong intra-cluster coupling. We show that the collective effect of the quantum environment is suppressed in the „critical“ phase during the evolution where quantum tunneling „decides“ the right path to solution. In a later stage dissipation facilitates the multiqubit tunneling leading to the solution state. The predictions of the model accurately describe the experimental data from the D-Wave Two quantum annealer at NASA Ames. In our computational primitive the temperature dependence of the probability of success in the quantum model is opposite to that of the classical paths with thermal hopping. Specifically, we provide an analysis of an optimization problem with sixteen qubits, demonstrating eight qubit tunneling that increases success probabilities. Furthermore, we report results for larger problems with up to 200 qubits that contain the primitive as subproblems.