Dielectric loss extraction for superconducting microwave resonators

  1. C.R.H. McRae,
  2. R.E. Lake,
  3. J. L. Long,
  4. M. Bal,
  5. X. Wu,
  6. B. Jugdersuren,
  7. T.H. Metcalf,
  8. X. Liu,
  9. and D. P. Pappas
The investigation of two-level-state (TLS) loss in dielectric materials and interfaces remains at the forefront of materials research in superconducting quantum circuits. We demonstrate
a method of TLS loss extraction of a thin film dielectric by measuring a lumped element resonator fabricated from a superconductor-dielectric-superconductor trilayer. We extract the dielectric loss by formulating a circuit model for a lumped element resonator with TLS loss and then fitting to this model using measurements from a set of three resonator designs: a coplanar waveguide resonator, a lumped element resonator with an interdigitated capacitor, and a lumped element resonator with a parallel plate capacitor that includes the dielectric thin film of interest. Unlike other methods, this allows accurate measurement of materials with TLS loss lower than 10−6. We demonstrate this method by extracting a TLS loss of 1.02×10−3 for sputtered Al2O3 using a set of samples fabricated from an Al/Al2O3/Al trilayer. We observe a difference of 11% between extracted loss of the trilayer with and without the implementation of this method.

Overlap junctions for high coherence superconducting qubits

  1. X. Wu,
  2. J. L. Long,
  3. H. S. Ku,
  4. R.E. Lake,
  5. M. Bal,
  6. and D. P. Pappas
Fabrication of sub-micron Josephson junctions is demonstrated using standard processing techniques for high-coherence, superconducting qubits. These junctions are made in two separate
lithography steps with normal-angle evaporation. Most significantly, this work demonstrates that it is possible to achieve high coherence with junctions formed on aluminum surfaces cleaned in situ with Ar milling before the junction oxidation. This method eliminates the angle-dependent shadow masks typically used for small junctions. Therefore, this is conducive to the implementation of typical methods for improving margins and yield using conventional CMOS processing. The current method uses electron-beam lithography and an additive process to define the top and bottom electrodes. Extension of this work to optical lithography and subtractive processes is discussed.

Qubit gates using hyperbolic secant pulses

  1. H. S. Ku,
  2. J. L. Long,
  3. X. Wu,
  4. M. Bal,
  5. R.E. Lake,
  6. Edwin Barnes,
  7. Sophia E. Economou,
  8. and D. P. Pappas
It has been known since the early days of quantum mechanics that hyperbolic secant pulses possess the unique property that they can perform cyclic evolution on two-level quantum systems
independently of the pulse detuning. More recently, it was realized that they induce detuning- controlled phases without changing state populations. Here, we experimentally demonstrate the properties of hyperbolic secant pulses on superconducting transmon qubits and contrast them with the more commonly used Gaussian and square waves. We further show that these properties can be exploited to implement phase gates, nominally without exiting the computational subspace. This enables us to demonstrate the first microwave-driven Z-gates with a single control parameter, the detuning.