Time-resolved tomography of a driven adiabatic quantum simulation

  1. Gian Salis,
  2. Nikolaj Moll,
  3. Marco Roth,
  4. Marc Ganzhorn,
  5. and Stefan Filipp
A typical goal of a quantum simulation is to find the energy levels and eigenstates of a given Hamiltonian. This can be realized by adiabatically varying the system control parameters
to steer an initial eigenstate into the eigenstate of the target Hamiltonian. Such an adiabatic quantum simulation is demonstrated by directly implementing a controllable and smoothly varying Hamiltonian in the rotating frame of two superconducting qubits, including longitudinal and transverse fields and iSWAP-type two-qubit interactions. The evolution of each eigenstate is tracked using time-resolved state tomography. The energy gaps between instantaneous eigenstates are chosen such that depending on the energy transition rate either diabatic or adiabatic passages are observed in the measured energies and correlators. Errors in the obtained energy values induced by finite T1 and T2 times of the qubits are mitigated by extrapolation to short protocol times.

Adiabatic quantum simulations with driven superconducting qubits

  1. Marco Roth,
  2. Nikolaj Moll,
  3. Gian Salis,
  4. Marc Ganzhorn,
  5. Daniel J. Egger,
  6. Stefan Filipp,
  7. and Sebastian Schmidt
We propose a quantum simulator based on driven superconducting qubits where the interactions are generated parametrically by a polychromatic magnetic flux modulation of a tunable bus
element. Using a time-dependent Schrieffer-Wolff transformation, we analytically derive a multi-qubit Hamiltonian which features independently tunable XX and YY-type interactions as well as local bias fields over a large parameter range. We demonstrate the adiabatic simulation of the ground state of a hydrogen molecule using two superconducting qubits and one tunable bus element. The time required to reach chemical accuracy lies in the few microsecond range and therefore could be implemented on currently available superconducting circuits. Further applications of this technique may also be found in the simulation of interacting spin systems.

Analysis of parametrically driven exchange-type (iSWAP) and two-photon (bSWAP) interactions between superconducting qubits

  1. Marco Roth,
  2. Marc Ganzhorn,
  3. Nikolaj Moll,
  4. Stefan Filipp,
  5. Gian Salis,
  6. and Sebastian Schmidt
A current bottleneck for quantum computation is the realization of high-fidelity two-qubit quantum operations between two and more quantum bits in arrays of coupled qubits. Gates based
on parametrically driven tunable couplers offer a convenient method to entangle multiple qubits by selectively activating different interaction terms in the effective Hamiltonian. Here, we study theoretically and experimentally a superconducting qubit setup with two transmon qubits connected via a capacitively coupled tunable bus. We develop a time-dependent Schrieffer-Wolff transformation and derive analytic expressions for exchange-interaction gates swapping excitations between the qubits (iSWAP) and for two-photon gates creating and annihilating simultaneous two-qubit excitations (bSWAP). We find that the bSWAP gate is generally slower than the more commonly used iSWAP gate, but features favorable scalability properties with less severe frequency crowding effects, which typically degrade the fidelity in multi-qubit setups. Our theoretical results are backed by experimental measurements as well as exact numerical simulations including the effects of higher transmon levels and dissipation.