On-demand quantum state transfer and entanglement between remote microwave cavity memories

  1. Christopher Axline,
  2. Luke Burkhart,
  3. Wolfgang Pfaff,
  4. Mengzhen Zhang,
  5. Kevin Chou,
  6. Philippe Campagne-Ibarcq,
  7. Philip Reinhold,
  8. Luigi Frunzio,
  9. S.M. Girvin,
  10. Liang Jiang,
  11. M.H. Devoret,
  12. and R. J. Schoelkopf
Modular quantum computing architectures require fast and efficient distribution of quantum information through propagating signals. Here we report rapid, on-demand quantum state transfer
between two remote superconducting cavity quantum memories through traveling microwave photons. We demonstrate a quantum communication channel by deterministic transfer of quantum bits with 76% fidelity. Heralding on errors induced by experimental imperfection can improve this to 87% with a success probability of 0.87. By partial transfer of a microwave photon, we generate remote entanglement at a rate that exceeds photon loss in either memory by more than a factor of three. We further show the transfer of quantum error correction code words that will allow deterministic mitigation of photon loss. These results pave the way for scaling superconducting quantum devices through modular quantum networks.

A CNOT gate between multiphoton qubits encoded in two cavities

  1. Serge Rosenblum,
  2. Yvonne Gao,
  3. Philip Reinhold,
  4. Chen Wang,
  5. Christopher Axline,
  6. Luigi Frunzio,
  7. Steven Girvin,
  8. Liang Jiang,
  9. Mazyar Mirrahimi,
  10. Michel Devoret,
  11. and Robert Schoelkopf
Entangling gates between qubits are a crucial component for performing algorithms in quantum computers. However, any quantum algorithm will ultimately have to operate on error-protected
logical qubits, which are effective qubits encoded in a high-dimensional Hilbert space. A common approach is to encode logical qubits in collective states of multiple two-level systems, but algorithms operating on multiple logical qubits are highly complex and have not yet been demonstrated. Here, we experimentally realize a controlled NOT (CNOT) gate between two multiphoton qubits in two microwave cavities. In this approach, we encode a qubit in the large Hilbert space of a single cavity mode, rather than in multiple two-level systems. We couple two such encoded qubits together through a transmon, which is driven with an RF pump to apply the CNOT gate within 190 ns. This is two orders of magnitude shorter than the decoherence time of any part of the system, enabling high-fidelity operations comparable to state-of-the-art gates between two-level systems. These results are an important step towards universal algorithms on error-corrected logical qubits.

A coaxial line architecture for integrating and scaling 3D cQED systems

  1. Christopher Axline,
  2. Matthew Reagor,
  3. Reinier W. Heeres,
  4. Philip Reinhold,
  5. Chen Wang,
  6. Kevin Shain,
  7. Wolfgang Pfaff,
  8. Yiwen Chu,
  9. Luigi Frunzio,
  10. and Robert J. Schoelkopf
Numerous loss mechanisms can limit coherence and scalability of planar and 3D-based circuit quantum electrodynamics (cQED) devices, particularly due to their packaging. The low loss
and natural isolation of 3D enclosures make them good candidates for coherent scaling. We introduce a coaxial transmission line device architecture with coherence similar to traditional 3D cQED systems. Measurements demonstrate well-controlled external and on-chip couplings, a spectrum absent of cross-talk or spurious modes, and excellent resonator and qubit lifetimes. We integrate a resonator-qubit system in this architecture with a seamless 3D cavity, and separately pattern a qubit, readout resonator, Purcell filter and high-Q stripline resonator on a single chip. Device coherence and its ease of integration make this a promising tool for complex experiments.

A Schrodinger Cat Living in Two Boxes

  1. Chen Wang,
  2. Yvonne Y. Gao,
  3. Philip Reinhold,
  4. R. W. Heeres,
  5. Nissim Ofek,
  6. Kevin Chou,
  7. Christopher Axline,
  8. Matthew Reagor,
  9. Jacob Blumoff,
  10. K. M. Sliwa,
  11. L. Frunzio,
  12. S. M. Girvin,
  13. Liang Jiang,
  14. M. Mirrahimi,
  15. M. H. Devoret,
  16. and R. J. Schoelkopf
Quantum superpositions of distinct coherent states in a single-mode harmonic oscillator, known as „cat states“, have been an elegant demonstration of Schrodinger’s
famous cat paradox. Here, we realize a two-mode cat state of electromagnetic fields in two microwave cavities bridged by a superconducting artificial atom, which can also be viewed as an entangled pair of single-cavity cat states. We present full quantum state tomography of this complex cat state over a Hilbert space exceeding 100 dimensions via quantum non-demolition measurements of the joint photon number parity. The ability to manipulate such multi-cavity quantum states paves the way for logical operations between redundantly encoded qubits for fault-tolerant quantum computation and communication.

Surface participation and dielectric loss in superconducting qubits

  1. Chen Wang,
  2. Christopher Axline,
  3. Yvonne Y. Gao,
  4. Teresa Brecht,
  5. Luigi Frunzio,
  6. Michel H. Devoret,
  7. and Robert J. Schoelkopf
We study the energy relaxation times (T1) of superconducting transmon qubits in 3D cavities as a function of dielectric participation ratios of material surfaces. This surface participation
ratio, representing the fraction of electric field energy stored in a dissipative surface layer, is computed by a two-step finite-element simulation and experimentally varied by qubit geometry. With a clean electromagnetic environment and suppressed non-equilibrium quasiparticle density, we find an approximately proportional relation between the transmon relaxation rates and surface participation ratios. These results suggest dielectric dissipation arising from material interfaces is the major limiting factor for the T1 of transmons in 3D cQED architecture. Our analysis also supports the notion of spatial discreteness of surface dielectric dissipation.

A quantum memory with near-millisecond coherence in circuit QED

  1. Matthew Reagor,
  2. Wolfgang Pfaff,
  3. Christopher Axline,
  4. Reinier W. Heeres,
  5. Nissim Ofek,
  6. Katrina Sliwa,
  7. Eric Holland,
  8. Chen Wang,
  9. Jacob Blumoff,
  10. Kevin Chou,
  11. Michael J. Hatridge,
  12. Luigi Frunzio,
  13. Michel H. Devoret,
  14. Liang Jiang,
  15. and Robert J. Schoelkopf
Significant advances in coherence have made superconducting quantum circuits a viable platform for fault-tolerant quantum computing. To further extend capabilities, highly coherent
quantum systems could act as quantum memories for these circuits. A useful quantum memory must be rapidly addressable by qubits, while maintaining superior coherence. We demonstrate a novel superconducting microwave cavity architecture that is highly robust against major sources of loss that are encountered in the engineering of circuit QED systems. The architecture allows for near-millisecond storage of quantum states in a resonator while strong coupling between the resonator and a transmon qubit enables control, encoding, and readout at MHz rates. The observed coherence times constitute an improvement of almost an order of magnitude over those of the best available superconducting qubits. Our design is an ideal platform for studying coherent quantum optics and marks an important step towards hardware-efficient quantum computing with Josephson junction-based quantum circuits.