Enhancement of microwave squeezing via parametric down-conversion in a superconducting quantum circuit

  1. Kong Han,
  2. Yimin Wang,
  3. and Guo-Qiang Zhang
We propose an experimentally accessible superconducting quantum circuit, consisting of two coplanar waveguide resonators (CWRs), to enhance the microwave squeezing via parametric down-conversion
(PDC). In our scheme, the two CWRs are nonlinearly coupled through a superconducting quantum interference device embedded in one of the CWRs. This is equivalent to replacing the transmission line in a flux-driven Josephson parametric amplifier (JPA) by a CWR, which makes it possible to drive the JPA by a quantized microwave field. Owing to this design, the PDC coefficient can be considerably increased to be about tens of megahertz, satisfying the strong-coupling condition. Using the Heisenberg-Langevin approach, we numerically show the enhancement of the microwave squeezing in our scheme. In contrast to the JPA, our proposed system becomes stable around the critical point and can generate stronger transient squeezing. In addition, the strong-coupling PDC can be used to engineer the photon blockade.

Photon-Dressed Bloch-Siegert Shift in an Ultrastrongly Coupled Circuit Quantum Electrodynamical System

  1. Shuai-Peng Wang,
  2. Guo-Qiang Zhang,
  3. Yimin Wang,
  4. Zhen Chen,
  5. Tiefu Li,
  6. J. S. Tsai,
  7. Shi-Yao Zhu,
  8. and J. Q. You
A cavity quantum electrodynamical (QED) system beyond the strong-coupling regime is expected to exhibit intriguing quantum phenomena. Here we report a direct measurement of the photon-dressed
qubit transition frequencies up to four photons by harnessing the same type of state transitions in an ultrastrongly coupled circuit-QED system realized by inductively coupling a superconducting flux qubit to a coplanar-waveguide resonator. This demonstrates a convincing observation of the photon-dressed Bloch-Siegert shift in the ultrastrongly coupled quantum system. Moreover, our results show that the photon-dressed Bloch-Siegert shift becomes more pronounced as the photon number increases, which is a characteristic of the quantum Rabi model.

Controllable anisotropic quantum Rabi model beyond the ultrastrong coupling regime with circuit QED systems

  1. Yimin Wang,
  2. Wen-Long You,
  3. Maoxin Liu,
  4. Yu-Li Dong,
  5. Hong-Gang Luo,
  6. G. Romero,
  7. and J. Q. You
By manipulating the flux qubits with bichromatic time-dependent magnetic fluxes in standard circuit QED systems, we propose an experimentally-accessible method to approach the physics
of the anisotropic quantum Rabi model (AQRM) in broad parameter ranges, where the rotating and counter-rotating interactions are governed by two different coupling constants. Assisted by theoretical derivations and numerical calculations, we show that our scheme not only allows for individual control of the parameters in the simulated AQRM but also reproduces the dynamics of the ultrastrong and deep strong coupling regimes. Therefore, our scheme advances the investigation of extremely strong interactions of the AQRM, which are usually experimentally unattainable. Furthermore, associated with the special case of the degenerate AQRM, we demonstrate that our setup may also find applications for protected quantum memory and quantum computation since it can be used to generate the Schr\“{o}dinger cat states and the quantum controlled phase gates when scaling up.

Holonomic quantum computation in the ultrastrong-coupling regime of circuit QED

  1. Yimin Wang,
  2. Jiang Zhang,
  3. Chunfeng Wu,
  4. J. Q. You,
  5. and G. Romero
We present an experimentally feasible scheme to implement holonomic quantum computation in the ultrastrong-coupling regime of light-matter interaction. The large anharmonicity and the
Z2 symmetry of the quantum Rabi model allow us to build an effective three-level {\Lambda}-structured artificial atom for quantum computation. The proposed physical implementation includes two gradiometric flux qubits and two microwave resonators where single-qubit gates are realized by a two-tone driving on one physical qubit, and a two-qubit gate is achieved with a time-dependent coupling between the field quadratures of both resonators. Our work paves the way for scalable holonomic quantum computation in ultrastrongly coupled systems.

Multi-photon sideband transitions in an ultrastrongly-coupled circuit quantum electrodynamics system

  1. Zhen Chen,
  2. Yimin Wang,
  3. Tiefu Li,
  4. Lin Tian,
  5. Yueyin Qiu,
  6. Kunihiro Inomata,
  7. Fumiki Yoshihara,
  8. Siyuan Han,
  9. Franco Nori,
  10. J. S. Tsai,
  11. and J. Q. You
Ultrastrong coupling in circuit quantum electrodynamics systems not only provides a platform to study the quantum Rabi model, but it can also facilitate the implementation of quantum
logic operations via high-lying resonator states. In this regime, quantum manifolds with different excitation numbers are intrinsically connected via the counter-rotating interactions, which can result in multi-photon processes. Recent experiments have demonstrated ultrastrong coupling in superconducting qubits electromagnetically coupled to superconducting resonators. Here we report the experimental observation of multiphoton sideband transitions of a superconducting flux qubit coupled to a coplanar waveguide resonator in the ultrastrong coupling regime. With a coupling strength reaching about 10% of the fundamental frequency of the resonator, we obtain clear signatures of higher-order red-sideband transitions and the first-order blue-sideband transition in a transmission spectroscopic measurement. This study advances the understanding of driven ultrastrongly-coupled systems.