An ultra-high gain single-photon transistor in the microwave regime

  1. Zhiling Wang,
  2. Zenghui Bao,
  3. Yan Li,
  4. Yukai Wu,
  5. Weizhou Cai,
  6. Weiting Wang,
  7. Xiyue Han,
  8. Jiahui Wang,
  9. Yipu Song,
  10. Luyan Sun,
  11. Hongyi Zhang,
  12. and Luming Duan
A photonic transistor that can switch or amplify an optical signal with a single gate photon requires strong non-linear interaction at the single-photon level. Circuit quantum electrodynamics
provides great flexibility to generate such an interaction, and thus could serve as an effective platform to realize a high-performance single-photon transistor. Here we demonstrate such a photonic transistor in the microwave regime. Our device consists of two microwave cavities dispersively coupled to a superconducting qubit. A single gate photon imprints a phase shift on the qubit state through one cavity, and further shifts the resonance frequency of the other cavity. In this way, we realize a gain of the transistor up to 53.4 dB, with an extinction ratio better than 20 dB. Our device outperforms previous devices in the optical regime by several orders in terms of optical gain, which indicates a great potential for application in the field of microwave quantum photonics and quantum information processing.

Experimental preparation of generalized cat states for itinerant microwave photons

  1. Zenghui Bao,
  2. Zhiling Wang,
  3. Yukai Wu,
  4. Yan Li,
  5. Weizhou Cai,
  6. Weiting Wang,
  7. Yuwei Ma,
  8. Tianqi Cai,
  9. Xiyue Han,
  10. Jiahui Wang,
  11. Yipu Song,
  12. Luyan Sun,
  13. Hongyi Zhang,
  14. and Luming Duan
Generalized cat states represent arbitrary superpositions of coherent states, which are of great importance in various quantum information processing protocols. Here we demonstrate
a versatile approach to creating generalized itinerant cat states in the microwave domain, by reflecting coherent state photons from a microwave cavity containing a superconducting qubit. We show that, with a coherent control of the qubit state, a full control over the coherent state superposition can be realized. The prepared cat states are verified through quantum state tomography of the qubit state dependent reflection photon field. We further quantify quantum coherence in the prepared cat states based on the resource theory, revealing a good experimental control on the coherent state superpositions. The photon number statistic and the squeezing properties are also analyzed. Remarkably, fourth-order squeezing is observed in the experimental states. Those results open up new possibilities of applying generalized cat states for the purpose of quantum information processing.

A flying Schrödinger cat in multipartite entangled states

  1. Zhiling Wang,
  2. Zenghui Bao,
  3. Yukai Wu,
  4. Yan Li,
  5. Weizhou Cai,
  6. Weiting Wang,
  7. Yuwei Ma,
  8. Tianqi Cai,
  9. Xiyue Han,
  10. Jiahui Wang,
  11. Yipu Song,
  12. Luyan Sun,
  13. Hongyi Zhang,
  14. and Luming Duan
Schrödinger’s cat originates from the famous thought experiment querying the counterintuitive quantum superposition of macroscopic objects. As a natural extension, several „cats“
(quasi-classical objects) can be prepared into coherent quantum superposition states, which is known as multipartite cat states demonstrating quantum entanglement among macroscopically distinct objects. Here we present a highly scalable approach to deterministically create flying multipartite Schrödinger cat states, by reflecting coherent state photons from a microwave cavity containing a superconducting qubit. We perform full quantum state tomography on the cat states with up to four photonic modes and confirm the existence of quantum entanglement among them. We also witness the hybrid entanglement between discrete-variable states (the qubit) and continuous-variable states (the flying multipartite cat) through a joint quantum state tomography. Our work demonstrates an important experimental control method in the microwave region and provides an enabling step for implementing a series of quantum metrology and quantum information processing protocols based on cat states.

Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting circuit

  1. Yuan Xu,
  2. Ziyue Hua,
  3. Tao Chen,
  4. Xiaoxuan Pan,
  5. Xuegang Li,
  6. Jiaxiu Han,
  7. Weizhou Cai,
  8. Yuwei Ma,
  9. Haiyan Wang,
  10. Yipu Song,
  11. Zheng-Yuan Xue,
  12. and Luyan Sun
Using geometric phases to realize noise-resilient quantum computing is an important method to enhance the control fidelity. In this work, we experimentally realize a universal nonadiabatic
geometric quantum gate set in a superconducting qubit chain. We characterize the realized single- and two-qubit geometric gates with both quantum process tomography and randomized benchmarking methods. The measured average fidelities for the single-qubit rotation gates and two-qubit controlled-Z gate are 0.9977 and 0.977, respectively. Besides, we also experimentally demonstrate the noise-resilient feature of the realized single-qubit geometric gates by comparing their performance with the conventional dynamic gates with different types of errors in the control field. Thus, our experiment proves a way to achieve high-fidelity geometric quantum gates for robust quantum computation.

Observation of topological magnon insulator states in a superconducting circuit

  1. Weizhou Cai,
  2. Jiaxiu Han,
  3. Feng Mei,
  4. Yuan Xu,
  5. Yuwei Ma,
  6. Xuegang Li,
  7. Haiyan Wang,
  8. Yipu Song,
  9. Zheng-Yuan Xue,
  10. Zhang-qi Yin,
  11. Suotang Jia,
  12. and Luyan Sun
Searching topological states of matter in tunable artificial systems has recently become a rapidly growing field of research. Meanwhile, significant experimental progresses on observing
topological phenomena have been made in superconducting circuits. However, topological insulator states have not yet been reported in this system. Here, for the first time, we experimentally realize a spin version of the Su-Schrieffer-Heeger model and observe the topological magnon insulator states in a superconducting qubit chain, which manifest both topological invariants and topological edge states. Based on simply monitoring the time evolution of a singlequbit excitation in the chain, we demonstrate that the topological winding numbers and the topological magnon edge and soliton states can all be directly observed. Our work thus opens a new avenue to use controllable qubit chain system to explore novel topological states of matter and also offers exciting possibilities for topologically protected quantum information processing.

Quantum generative adversarial learning in a superconducting quantum circuit

  1. Ling Hu,
  2. Shu-Hao Wu,
  3. Weizhou Cai,
  4. Yuwei Ma,
  5. Xianghao Mu,
  6. Yuan Xu,
  7. Haiyan Wang,
  8. Yipu Song,
  9. Dong-Ling Deng,
  10. Chang-Ling Zou,
  11. and Luyan Sun
Generative adversarial learning is one of the most exciting recent breakthroughs in machine learning—a subfield of artificial intelligence that is currently driving a revolution
in many aspects of modern society. It has shown splendid performance in a variety of challenging tasks such as image and video generations. More recently, a quantum version of generative adversarial learning has been theoretically proposed and shown to possess the potential of exhibiting an exponential advantage over its classical counterpart. Here, we report the first proof-of-principle experimental demonstration of quantum generative adversarial learning in a superconducting quantum circuit. We demonstrate that, after several rounds of adversarial learning, a quantum state generator can be trained to replicate the statistics of the quantum data output from a digital qubit channel simulator, with a high fidelity (98.8% on average) that the discriminator cannot distinguish between the true and the generated data. Our results pave the way for experimentally exploring the intriguing long-sought-after quantum advantages in machine learning tasks with noisy intermediate-scale quantum devices.

Experimental demonstration of work fluctuations along a shortcut to adiabaticity with a superconducting Xmon qubit

  1. Zhenxing Zhang,
  2. Tenghui Wang,
  3. Liang Xiang,
  4. Zhilong Jia,
  5. Peng Duan,
  6. Weizhou Cai,
  7. Ze Zhan,
  8. Zhiwen Zong,
  9. Jianlan Wu,
  10. Luyan Sun,
  11. Yi Yin,
  12. and Guoping Guo
In a `shortcut-to-adiabaticity‘ (STA) protocol, the counter-diabatic Hamiltonian, which suppresses the non-adiabatic transition of a reference `adiabatic‘ trajectory, induces
a quantum uncertainty of the work cost in the framework of quantum thermodynamics. Following a theory derived recently [Funo et al 2017 Phys. Rev. Lett. 118 100602], we perform an experimental measurement of the STA work statistics in a high-quality superconducting Xmon qubit. Through the frozen-Hamiltonian and frozen-population techniques, we experimentally realize the two-point measurement of the work distribution for given initial eigenstates. Our experimental statistics verify (i) the conservation of the average STA work and (ii) the equality between the STA excess of work fluctuations and the quantum geometric tensor.