Investigating microwave loss of SiGe using superconducting transmon qubits

  1. Martin Sandberg,
  2. Vivekananda P. Adiga,
  3. Markus Brink,
  4. Cihan Kurter,
  5. Conal Murray,
  6. Marinus Hopstaken,
  7. John Bruley,
  8. Jason Orcutt,
  9. and Hanhee Paik
Silicon-Germanium (SiGe) is a material that possesses a multitude of applications ranging from transistors to eletro-optical modulators and quantum dots. The diverse properties of SiGe
also make it attractive to implementations involving superconducting quantum computing. Here we demonstrate the fabrication of transmon quantum bits on SiGe layers and investigate the microwave loss properties of SiGe at cryogenic temperatures and single photon microwave powers. We find relaxation times of up to 100 μs, corresponding to a quality factor Q above 4 M for large pad transmons. The high Q values obtained indicate that the SiGe/Si heterostructure is compatible with state of the art performance of superconducting quantum circuits.

Active protection of a superconducting qubit with an interferometric Josephson isolator

  1. Baleegh Abdo,
  2. Nicholas T. Bronn,
  3. Oblesh Jinka,
  4. Salvatore Olivadese,
  5. Antonio D. Corcoles,
  6. Vivekananda P. Adiga,
  7. Markus Brink,
  8. Russell E. Lake,
  9. Xian Wu,
  10. David P. Pappas,
  11. and Jerry M. Chow
Nonreciprocal microwave devices play several critical roles in high-fidelity, quantum-nondemolition (QND) measurement schemes. They separate input from output, impose unidirectional
routing of readout signals, and protect the quantum systems from unwanted noise originated by the output chain. However, state-of-the-art, cryogenic circulators and isolators are disadvantageous in scalable superconducting quantum processors because they use magnetic materials and strong magnetic fields. Here, we realize an active isolator formed by coupling two nondegenerate Josephson mixers in an interferometric scheme. Nonreciprocity is generated by applying a phase gradient between the same-frequency pumps feeding the Josephson mixers, which play the role of the magnetic field in a Faraday medium. To demonstrate the applicability of this Josephson-based isolator for quantum measurements, we incorporate it into the output line of a superconducting qubit, coupled to a fast resonator and a Purcell filter. We also utilize a wideband, superconducting directional coupler for coupling the readout signals into and out of the qubit-resonator system and a quantum-limited Josephson amplifier for boosting the readout fidelity. By using this novel quantum setup, we demonstrate fast, high-fidelity, QND measurements of the qubit while providing more than 20 dB of protection against amplified noise reflected off the Josephson amplifier.

High Coherence Plane Breaking Packaging for Superconducting Qubits

  1. Nicholas T. Bronn,
  2. Vivekananda P. Adiga,
  3. Salvatore B. Olivadese,
  4. Xian Wu,
  5. Jerry M. Chow,
  6. and David P. Pappas
We demonstrate a pogo pin package for a superconducting quantum processor specifically designed with a nontrivial layout topology (e.g., a center qubit that cannot be accessed from
the sides of the chip). Two experiments on two nominally identical superconducting quantum processors in pogo packages, which use commercially available parts and require modest machining tolerances, are performed at low temperature (10 mK) in a dilution refrigerator and both found to behave comparably to processors in standard planar packages with wirebonds where control and readout signals come in from the edges. Single- and two-qubit gate errors are also characterized via randomized benchmarking. More detailed crosstalk measurements indicate levels of crosstalk less than -40 dB at the qubit frequencies, opening the possibility of integration with extensible qubit architectures.