Strategies and trade-offs for controllability and memory time of ultra-high-quality microwave cavities in circuit QED

  1. Iivari Pietikäinen,
  2. Ondřej Černotík,
  3. Alec Eickbusch,
  4. Aniket Maiti,
  5. John W.O. Garmon,
  6. Radim Filip,
  7. and Steven M. Girvin
Three-dimensional microwave cavity resonators have been shown to reach lifetimes of the order of a second by maximizing the cavity volume relative to its surface, using better materials,
and improving surface treatments. Such cavities represent an ideal platform for quantum computing with bosonic qubits, but their efficient control remains an outstanding problem since the large mode volume results in inefficient coupling to nonlinear elements used for their control. Moreover, this coupling induces additional cavity decay via the inverse Purcell effect which can easily destroy the advantage of {a} long intrinsic lifetime. Here, we discuss conditions on, and protocols for, efficient utilization of these ultra-high-quality microwave cavities as memories for conventional superconducting qubits. We show that, surprisingly, efficient write and read operations with ultra-high-quality cavities does not require similar quality factors for the qubits and other nonlinear elements used to control them. Through a combination of analytical and numerical calculations, we demonstrate that efficient coupling to cavities with second-scale lifetime is possible with state-of-the-art transmon and SNAIL devices and outline a route towards controlling cavities with even higher quality factors. Our work explores a potentially viable roadmap towards using ultra-high-quality microwave cavity resonators for storing and processing information encoded in bosonic qubits.

Demonstrating a superconducting dual-rail cavity qubit with erasure-detected logical measurements

  1. Kevin S. Chou,
  2. Tali Shemma,
  3. Heather McCarrick,
  4. Tzu-Chiao Chien,
  5. James D. Teoh,
  6. Patrick Winkel,
  7. Amos Anderson,
  8. Jonathan Chen,
  9. Jacob Curtis,
  10. Stijn J. de Graaf,
  11. John W.O. Garmon,
  12. Benjamin Gudlewski,
  13. William D. Kalfus,
  14. Trevor Keen,
  15. Nishaad Khedkar,
  16. Chan U Lei,
  17. Gangqiang Liu,
  18. Pinlei Lu,
  19. Yao Lu,
  20. Aniket Maiti,
  21. Luke Mastalli-Kelly,
  22. Nitish Mehta,
  23. Shantanu O. Mundhada,
  24. Anirudh Narla,
  25. Taewan Noh,
  26. Takahiro Tsunoda,
  27. Sophia H. Xue,
  28. Joseph O. Yuan,
  29. Luigi Frunzio,
  30. Jose Aumentado,
  31. Shruti Puri,
  32. Steven M. Girvin,
  33. S. Harvey Moseley Jr.,
  34. and Robert J. Schoelkopf
A critical challenge in developing scalable error-corrected quantum systems is the accumulation of errors while performing operations and measurements. One promising approach is to
design a system where errors can be detected and converted into erasures. A recent proposal aims to do this using a dual-rail encoding with superconducting cavities. In this work, we implement such a dual-rail cavity qubit and use it to demonstrate a projective logical measurement with erasure detection. We measure logical state preparation and measurement errors at the 0.01%-level and detect over 99% of cavity decay events as erasures. We use the precision of this new measurement protocol to distinguish different types of errors in this system, finding that while decay errors occur with probability ∼0.2% per microsecond, phase errors occur 6 times less frequently and bit flips occur at least 170 times less frequently. These findings represent the first confirmation of the expected error hierarchy necessary to concatenate dual-rail erasure qubits into a highly efficient erasure code.

Dual-rail encoding with superconducting cavities

  1. James D. Teoh,
  2. Patrick Winkel,
  3. Harshvardhan K. Babla,
  4. Benjamin J. Chapman,
  5. Jahan Claes,
  6. Stijn J. de Graaf,
  7. John W.O. Garmon,
  8. William D. Kalfus,
  9. Yao Lu,
  10. Aniket Maiti,
  11. Kaavya Sahay,
  12. Neel Thakur,
  13. Takahiro Tsunoda,
  14. Sophia H. Xue,
  15. Luigi Frunzio,
  16. Steven M. Girvin,
  17. Shruti Puri,
  18. and Robert J. Schoelkopf
The design of quantum hardware that reduces and mitigates errors is essential for practical quantum error correction (QEC) and useful quantum computations. To this end, we introduce
the circuit-QED dual-rail qubit in which our physical qubit is encoded in the single-photon subspace of two superconducting cavities. The dominant photon loss errors can be detected and converted into erasure errors, which are much easier to correct. In contrast to linear optics, a circuit-QED implementation of the dual-rail code offers completely new capabilities. Using a single transmon ancilla, we describe a universal gate set that includes state preparation, logical readout, and parametrizable single and two-qubit gates. Moreover, first-order hardware errors due to the cavity and transmon in all of these operations can be detected and converted to erasure errors, leaving background Pauli errors that are orders of magnitude smaller. Hence, the dual-rail cavity qubit delivers an optimal hierarchy of errors and rates, and is expected to be well below the relevant QEC thresholds with today’s devices.

Error-detectable bosonic entangling gates with a noisy ancilla

  1. Takahiro Tsunoda,
  2. James D. Teoh,
  3. William D. Kalfus,
  4. Stijn J. de Graaf,
  5. Benjamin J. Chapman,
  6. Jacob C. Curtis,
  7. Neel Thakur,
  8. Steven M. Girvin,
  9. and Robert J. Schoelkopf
Bosonic quantum error correction has proven to be a successful approach for extending the coherence of quantum memories, but to execute deep quantum circuits, high-fidelity gates between
encoded qubits are needed. To that end, we present a family of error-detectable two-qubit gates for a variety of bosonic encodings. From a new geometric framework based on a „Bloch sphere“ of bosonic operators, we construct ZZL(θ) and eSWAP(θ) gates for the binomial, 4-legged cat, dual-rail and several other bosonic codes. The gate Hamiltonian is simple to engineer, requiring only a programmable beamsplitter between two bosonic qubits and an ancilla dispersively coupled to one qubit. This Hamiltonian can be realized in circuit QED hardware with ancilla transmons and microwave cavities. The proposed theoretical framework was developed for circuit QED but is generalizable to any platform that can effectively generate this Hamiltonian. Crucially, one can also detect first-order errors in the ancilla and the bosonic qubits during the gates. We show that this allows one to reach error-detected gate fidelities at the 10−4 level with today’s hardware, limited only by second-order hardware errors.

Architectures for Multinode Superconducting Quantum Computers

  1. James Ang,
  2. Gabriella Carini,
  3. Yanzhu Chen,
  4. Isaac Chuang,
  5. Michael Austin DeMarco,
  6. Sophia E. Economou,
  7. Alec Eickbusch,
  8. Andrei Faraon,
  9. Kai-Mei Fu,
  10. Steven M. Girvin,
  11. Michael Hatridge,
  12. Andrew Houck,
  13. Paul Hilaire,
  14. Kevin Krsulich,
  15. Ang Li,
  16. Chenxu Liu,
  17. Yuan Liu,
  18. Margaret Martonosi,
  19. David C. McKay,
  20. James Misewich,
  21. Mark Ritter,
  22. Robert J. Schoelkopf,
  23. Samuel A. Stein,
  24. Sara Sussman,
  25. Hong X. Tang,
  26. Wei Tang,
  27. Teague Tomesh,
  28. Norm M. Tubman,
  29. Chen Wang,
  30. Nathan Wiebe,
  31. Yong-Xin Yao,
  32. Dillon C. Yost,
  33. and Yiyu Zhou
Many proposals to scale quantum technology rely on modular or distributed designs where individual quantum processors, called nodes, are linked together to form one large multinode
quantum computer (MNQC). One scalable method to construct an MNQC is using superconducting quantum systems with optical interconnects. However, a limiting factor of these machines will be internode gates, which may be two to three orders of magnitude noisier and slower than local operations. Surmounting the limitations of internode gates will require a range of techniques, including improvements in entanglement generation, the use of entanglement distillation, and optimized software and compilers, and it remains unclear how improvements to these components interact to affect overall system performance, what performance from each is required, or even how to quantify the performance of each. In this paper, we employ a `co-design‘ inspired approach to quantify overall MNQC performance in terms of hardware models of internode links, entanglement distillation, and local architecture. In the case of superconducting MNQCs with microwave-to-optical links, we uncover a tradeoff between entanglement generation and distillation that threatens to degrade performance. We show how to navigate this tradeoff, lay out how compilers should optimize between local and internode gates, and discuss when noisy quantum links have an advantage over purely classical links. Using these results, we introduce a roadmap for the realization of early MNQCs which illustrates potential improvements to the hardware and software of MNQCs and outlines criteria for evaluating the landscape, from progress in entanglement generation and quantum memory to dedicated algorithms such as distributed quantum phase estimation. While we focus on superconducting devices with optical interconnects, our approach is general across MNQC implementations.

Observation of wave-packet branching through an engineered conical intersection

  1. Christopher S. Wang,
  2. Nicholas E. Frattini,
  3. Benjamin J. Chapman,
  4. Shruti Puri,
  5. Steven M. Girvin,
  6. Michel H. Devoret,
  7. and Robert J. Schoelkopf
In chemical reactions, the interplay between coherent evolution and dissipation is central to determining key properties such as the rate and yield. Of particular interest are cases
where two potential energy surfaces cross at features known as conical intersections (CIs), resulting in nonadiabatic dynamics that may promote ultrafast and highly efficient reactions when rovibrational damping is present. A prominent chemical reaction that involves a CI is the cis-trans isomerization reaction in rhodopsin, which is crucial to vision. CIs in real molecular systems are typically investigated via optical pump-probe spectroscopy, which has demanding spectral bandwidth and temporal resolution requirements, and where precise control of the environment is challenging. A complementary approach for understanding chemical reactions is to use quantum simulators that can provide access to a wider range of observables, though thus far combining strongly interacting linear (rovibrational) and nonlinear (electronic) degrees of freedom with engineered dissipation has yet to be demonstrated. Here, we create a tunable CI in a hybrid qubit-oscillator circuit QED processor and simultaneously track both a reactive wave-packet and electronic qubit in the time-domain. We identify dephasing of the electronic qubit as the mechanism that drives wave-packet branching along the reactive coordinate in our model. Furthermore, we directly observe enhanced branching when the wave-packet passes through the CI. Thus, the forces that influence a chemical reaction can be viewed as an effective measurement induced dephasing rate that depends on the position of the wave-packet relative to the CI. Our results set the groundwork for more complex simulations of chemical dynamics, offering deeper insight into the role of dissipation in determining macroscopic quantities of interest such as the quantum yield of a chemical reaction.

The Kerr-Cat Qubit: Stabilization, Readout, and Gates

  1. Alexander Grimm,
  2. Nicholas E. Frattini,
  3. Shruti Puri,
  4. Shantanu O. Mundhada,
  5. Steven Touzard,
  6. Mazyar Mirrahimi,
  7. Steven M. Girvin,
  8. Shyam Shankar,
  9. and Michel H. Devoret
Quantum superpositions of macroscopically distinct classical states, so-called Schrödinger cat states, are a resource for quantum metrology, quantum communication, and quantum computation.
In particular, the superpositions of two opposite-phase coherent states in an oscillator encode a qubit protected against phase-flip errors. However, several challenges have to be overcome in order for this concept to become a practical way to encode and manipulate error-protected quantum information. The protection must be maintained by stabilizing these highly excited states and, at the same time, the system has to be compatible with fast gates on the encoded qubit and a quantum non-demolition readout of the encoded information. Here, we experimentally demonstrate a novel method for the generation and stabilization of Schrödinger cat states based on the interplay between Kerr nonlinearity and single-mode squeezing in a superconducting microwave resonator. We show an increase in transverse relaxation time of the stabilized, error-protected qubit over the single-photon Fock-state encoding by more than one order of magnitude. We perform all single-qubit gate operations on time-scales more than sixty times faster than the shortest coherence time and demonstrate single-shot readout of the protected qubit under stabilization. Our results showcase the combination of fast quantum control with the robustness against errors intrinsic to stabilized macroscopic states and open up the possibility of using these states as resources in quantum information processing.

Hardware-efficient quantum random access memory with hybrid quantum acoustic systems

  1. Connor T. Hann,
  2. Chang-Ling Zou,
  3. Yaxing Zhang,
  4. Yiwen Chu,
  5. Robert J. Schoelkopf,
  6. Steven M. Girvin,
  7. and Liang Jiang
Hybrid quantum systems in which acoustic resonators couple to superconducting qubits are promising quantum information platforms. High quality factors and small mode volumes make acoustic
modes ideal quantum memories, while the qubit-phonon coupling enables the initialization and manipulation of quantum states. We present a scheme for quantum computing with multimode quantum acoustic systems, and based on this scheme, propose a hardware-efficient implementation of a quantum random access memory (qRAM). Quantum information is stored in high-Q phonon modes, and couplings between modes are engineered by applying off-resonant drives to a transmon qubit. In comparison to existing proposals that involve directly exciting the qubit, this scheme can offer a substantial improvement in gate fidelity for long-lived acoustic modes. We show how these engineered phonon-phonon couplings can be used to access data in superposition according to the state of designated address modes–implementing a qRAM on a single chip.

Stabilized Cat in Driven Nonlinear Cavity: A Fault-Tolerant Error Syndrome Detector

  1. Shruti Puri,
  2. Alexander Grimm,
  3. Philippe Campagne-Ibarcq,
  4. Alec Eickbusch,
  5. Kyungjoo Noh,
  6. Gabrielle Roberts,
  7. Liang Jiang,
  8. Mazyar Mirrahimi,
  9. Michel H. Devoret,
  10. and Steven M. Girvin
low-weight operations with an ancilla to extract information about errors without causing backaction on the encoded system. Essentially, ancilla errors must not propagate to the encoded
system and induce errors beyond those which can be corrected. The current schemes for achieving this fault-tolerance to ancilla errors come at the cost of increased overhead requirements. An efficient way to extract error syndromes in a fault-tolerant manner is by using a single ancilla with strongly biased noise channel. Typically, however, required elementary operations can become challenging when the noise is extremely biased. We propose to overcome this shortcoming by using a bosonic-cat ancilla in a parametrically driven nonlinear cavity. Such a cat-qubit experiences only bit-flip noise and is stabilized against phase-flips. To highlight the flexibility of this approach, we illustrate the syndrome extraction process in a variety of codes such as qubit-based toric codes, bosonic cat- and Gottesman-Kitaev-Preskill (GKP) codes. Our results open a path for realizing hardware-efficient, fault-tolerant error syndrome extraction.

Stabilizer quantum error correction toolbox for superconducting qubits

  1. Simon E. Nigg,
  2. and Steven M. Girvin
We present a general protocol for stabilizer measurements and pumping in a system of N superconducting qubits. We assume always-on, equal dispersive couplings to a single mode of a
high-Q microwave resonator in the ultra-strong dispersive limit where the dispersive shifts largely exceed the spectral linewidth. In this limit, we show how to map the two eigenvalues of an arbitrary weight M < N Pauli operator, onto two quasi-orthogonal coherent states of the cavity. Together with a fast cavity readout, this enables the efficient measurement of stabilizer operators.