Correlating decoherence in transmon qubits: Low frequency noise by single fluctuators

  1. Steffen Schlör,
  2. Jürgen Lisenfeld,
  3. Clemens Müller,
  4. Andre Schneider,
  5. David P. Pappas,
  6. Alexey V. Ustinov,
  7. and Martin Weides
We report on long-term measurements of a highly coherent, non-tunable transmon qubit, revealing low-frequency burst noise in coherence times and transition frequency. We achieve this
through a simultaneous measurement of the qubits relaxation and dephasing rate as well as its resonance frequency and an analysis of their correlations. These yield information about the microscopic origin of the intrinsic decoherence mechanisms in Josephson qubits. Our data is consistent with a small number of microscopic two-level systems located at the edges of the superconducting film, which is further confirmed by a spectral noise analysis.

An argon ion beam milling process for native AlOx layers enabling coherent superconducting contacts

  1. Lukas Grünhaupt,
  2. Uwe von Lüpke,
  3. Daria Gusenkova,
  4. Sebastian T. Skacel,
  5. Nataliya Maleeva,
  6. Steffen Schlör,
  7. Alexander Bilmes,
  8. Hannes Rotzinger,
  9. Alexey V. Ustinov,
  10. Martin Weides,
  11. and Ioan M. Pop
We present an argon ion beam milling process to remove the native oxide layer forming on aluminum thin films due to their exposure to atmosphere in between lithographic steps. Our cleaning
process is readily integrable with conventional fabrication of Josephson junction quantum circuits. From measurements of the internal quality factors of superconducting microwave resonators with and without contacts, we place an upper bound on the residual resistance of an ion beam milled contact of 50mΩ⋅μm2 at a frequency of 4.5 GHz. Resonators for which only 6% of the total foot-print was exposed to the ion beam milling, in areas of low electric and high magnetic field, showed quality factors above 106 in the single photon regime, and no degradation compared to single layer samples. We believe these results will enable the development of increasingly complex superconducting circuits for quantum information processing.

Concentric transmon qubit featuring fast tunability and site-selective Z coupling

  1. Jochen Braumüller,
  2. Martin Sandberg,
  3. Michael R. Vissers,
  4. Andre Schneider,
  5. Steffen Schlör,
  6. Lukas Grünhaupt,
  7. Hannes Rotzinger,
  8. Michael Marthaler,
  9. Alexander Lukashenko,
  10. Amadeus Dieter,
  11. Alexey V. Ustinov,
  12. Martin Weides,
  13. and David P. Pappas
We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a simple fabrication process using Al evaporation and lift-off
lithography, we observe qubit lifetimes and coherence times in the order of 10us. We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. The presented qubit design features a passive direct Z coupling between neighboring qubits, being a pending quest in the field of quantum simulation.

Multi-photon dressing of an anharmonic superconducting many-level quantum circuit

  1. Jochen Braumüller,
  2. Joel Cramer,
  3. Steffen Schlör,
  4. Hannes Rotzinger,
  5. Lucas Radtke,
  6. Alexander Lukashenko,
  7. Ping Yang,
  8. Michael Marthaler,
  9. Lingzhen Guo,
  10. Alexey V. Ustinov,
  11. and Martin Weides
We report on the investigation of a superconducting anharmonic multi-level circuit that is coupled to a harmonic readout resonator. We observe multi-photon transitions via virtual energy
levels of our system up to the fifth excited state. The back-action of these higher-order excitations on our readout device is analyzed quantitatively and demonstrated to be in accordance with theoretical expectation. By applying a strong microwave drive we achieve multi-photon dressing of our system which is dynamically coupled by a weak probe tone. The emerging higher-order Rabi sidebands and associated Autler-Townes splittings involving up to five levels of the investigated anharmonic circuit are observed. Experimental results are in good agreement with master equation simulations.