Free-standing silicon shadow masks for transmon qubit fabrication

  1. I. Tsioutsios,
  2. K. Serniak,
  3. S. Diamond,
  4. Z. Wang,
  5. S. Shankar,
  6. L. Frunzio,
  7. R. J. Schoelkopf,
  8. and M. H. Devoret
Nanofabrication techniques for superconducting qubits rely on resist-based masks patterned by electron-beam or optical lithography. We have developed an alternative nanofabrication
technique based on free-standing silicon shadow masks fabricated from silicon-on-insulator wafers. These silicon shadow masks not only eliminate organic residues associated with resist-based lithography, but also provide a pathway to better understand and control surface-dielectric losses in superconducting qubits by decoupling mask fabrication from substrate preparation. We have successfully fabricated aluminum 3D transmon superconducting qubits with these shadow masks, and demonstrated energy relaxation times on par with state-of-the-art values.

Quantum Microwave Radiometry with a Superconducting Qubit

  1. Zhixin Wang,
  2. Mingrui Xu,
  3. Xu Han,
  4. Wei Fu,
  5. Shruti Puri,
  6. S. M. Girvin,
  7. Hong X. Tang,
  8. S. Shankar,
  9. and M. H. Devoret
The interaction of photons and coherent quantum systems can be employed to detect electromagnetic radiation with remarkable sensitivity. We introduce a quantum radiometer based on the
photon-induced-dephasing process of a superconducting qubit for sensing microwave radiation at the sub-unit-photon level. Using this radiometer, we demonstrated the radiative cooling of a 1-K microwave resonator and measured its mode temperature with an uncertainty ~0.01 K. We have thus developed a precise tool for studying the thermodynamics of quantum microwave circuits, which provides new solutions for calibrating hybrid quantum systems and detecting candidate particles for dark matter.

Josephson Array Mode Parametric Amplifier

  1. V. V. Sivak,
  2. S. Shankar,
  3. G. Liu,
  4. J. Aumentado,
  5. and M. H. Devoret
We introduce a novel near-quantum-limited amplifier with a large tunable bandwidth and high dynamic range – the Josephson Array Mode Parametric Amplifier (JAMPA). The signal and
idler modes involved in the amplification process are realized by the array modes of a chain of 1000 flux tunable, Josephson-junction-based, nonlinear elements. The frequency spacing between array modes is comparable to the flux tunability of the modes, ensuring that any desired frequency can be occupied by a resonant mode, which can further be pumped to produce high gain. We experimentally demonstrate that the device can be operated as a nearly quantum-limited parametric amplifier with 20 dB of gain at almost any frequency within (4-12) GHz band. On average, it has a 3 dB bandwidth of 11 MHz and input 1 dB compression power of -108 dBm, which can go as high as -93 dBm. We envision the application of such a device to the time- and frequency-multiplexed readout of multiple qubits, as well as to the generation of continuous-variable cluster states.

A stabilized logical quantum bit encoded in grid states of a superconducting cavity

  1. P. Campagne-Ibarcq,
  2. A. Eickbusch,
  3. S. Touzard,
  4. E. Zalys-Geller,
  5. N. E. Frattini,
  6. V. V. Sivak,
  7. P. Reinhold,
  8. S. Puri,
  9. S. Shankar,
  10. R. J. Schoelkopf,
  11. L. Frunzio,
  12. M. Mirrahimi,
  13. and M.H. Devoret
The majority of quantum information tasks require error-corrected logical qubits whose coherence times are vastly longer than that of currently available physical qubits. Among the
many quantum error correction codes, bosonic codes are particularly attractive as they make use of a single quantum harmonic oscillator to encode a correctable qubit in a hardware-efficient manner. One such encoding, based on grid states of an oscillator, has the potential to protect a logical qubit against all major physical noise processes. By stroboscopically modulating the interaction of a superconducting microwave cavity with an ancillary transmon, we have successfully prepared and permanently stabilized these grid states. The lifetimes of the three Bloch vector components of the encoded qubit are enhanced by the application of this protocol, and agree with a theoretical estimate based on the measured imperfections of the experiment.

Quantum back-action of variable-strength measurement

  1. M. Hatridge,
  2. S. Shankar,
  3. M. Mirrahimi,
  4. F. Schackert,
  5. K. Geerlings,
  6. T. Brecht,
  7. K. M. Sliwa,
  8. B. Abdo,
  9. L. Frunzio,
  10. S. M. Girvin,
  11. R. J. Schoelkopf,
  12. and M. H. Devoret
Measuring a quantum system can randomly perturb its state. The strength and nature of this back-action depends on the quantity which is measured. In a partial measurement performed
by an ideal apparatus, quantum physics predicts that the system remains in a pure state whose evolution can be tracked perfectly from the measurement record. We demonstrate this property using a superconducting qubit dispersively coupled to a cavity traversed by a microwave signal. The back-action on the qubit state of a single measurement of both signal quadratures is observed and shown to produce a stochastic operation whose action is determined by the measurement result. This accurate monitoring of a qubit state is an essential prerequisite for measurement-based feedback control of quantum systems.

Kerr-free three-wave mixing in superconducting quantum circuits

  1. V. V. Sivak,
  2. N. E. Frattini,
  3. V. R. Joshi,
  4. A. Lingenfelter,
  5. S. Shankar,
  6. and M. H. Devoret
Quantum-limited Josephson parametric amplifiers are crucial components in circuit QED readout chains. The dynamic range of state-of-the-art parametric amplifiers is limited by signal-induced
Stark shifts that detune the amplifier from its operating point. Using a Superconducting Nonlinear Asymmetric Inductive eLement (SNAIL) as an active component, we show the ability to in situ tune the device flux and pump to a dressed Kerr-free operating point, which provides a 10-fold increase in the number of photons that can be processed by our amplifier, compared to the nominal working point. Our proposed and experimentally verified methodology of Kerr-free three-wave mixing can be extended to improve the dynamic range of other pumped operations in quantum superconducting circuits.

Experimental implementation of a Raman-assisted six-quanta process

  1. S. O. Mundhada,
  2. A. Grimm,
  3. J. Venkatraman,
  4. Z.K. Minev,
  5. S. Touzard,
  6. N. E. Frattini,
  7. V. V. Sivak,
  8. K. Sliwa,
  9. P. Reinhold,
  10. S. Shankar,
  11. M. Mirrahimi,
  12. and M.H. Devoret
Fault tolerant quantum information processing requires specific nonlinear interactions acting within the Hilbert space of the physical system that implements a logical qubit. The required
order of nonlinearity is often not directly available in the natural interactions of the system. Here, we experimentally demonstrate a route to obtain higher-order nonlinearities by combining more easily available lower-order nonlinear processes, using a generalization of the Raman transitions. In particular, we demonstrate a Raman-assisted transformation of four photons of a high-Q superconducting cavity into two excitations of a superconducting transmon mode and vice versa. The resulting six-quanta process is obtained by cascading two fourth-order nonlinear processes through a virtual state. This process is a key step towards hardware efficient quantum error correction using Schrödinger cat-states.

Gated conditional displacement readout of superconducting qubits

  1. S. Touzard,
  2. A. Kou,
  3. N. E. Frattini,
  4. V. V. Sivak,
  5. S. Puri,
  6. A. Grimm,
  7. L. Frunzio,
  8. S. Shankar,
  9. and M.H. Devoret
We have realized a new interaction between superconducting qubits and a readout cavity that results in the displacement of a coherent state in the cavity, conditioned on the state of
the qubit. This conditional state, when it reaches the cavity-following, phase-sensitive amplifier, matches its measured observable, namely the in-phase quadrature. In a setup where several qubits are coupled to the same readout resonator, we show it is possible to measure the state of a target qubit with minimal dephasing of the other qubits. Our results suggest novel directions for faster readout of superconducting qubits and implementations of bosonic quantum error-correcting codes.

Cavity Attenuators for Superconducting Qubits

  1. Z. Wang,
  2. S. Shankar,
  3. Z.K. Minev,
  4. P. Campagne-Ibarcq,
  5. A. Narla,
  6. and M. H. Devoret
Dephasing induced by residual thermal photons in the readout resonator is a leading factor limiting the coherence times of qubits in the circuit QED architecture. This residual thermal
population, of the order of 10^−1–10^−3, is suspected to arise from noise impinging on the resonator from its input and output ports. To address this problem, we designed and tested a new type of band-pass microwave attenuator that consists of a dissipative cavity well thermalized to the mixing chamber stage of a dilution refrigerator. By adding such a cavity attenuator inline with a 3D superconducting cavity housing a transmon qubit, we have reproducibly measured increased qubit coherence times. At base temperature, through Hahn echo experiment, we measured T2e/2T1=1.0(+0.0/−0.1) for two qubits over multiple cooldowns. Through noise-induced dephasing measurement, we obtained an upper bound 2×10^−4 on the residual photon population in the fundamental mode of the readout cavity, which to our knowledge is the lowest value reported so far. These results validate an effective method for protecting qubits against photon noise, which can be developed into a standard technology for quantum circuit experiments.

Optimizing the nonlinearity and dissipation of a SNAIL Parametric Amplifier for dynamic range

  1. N. E. Frattini,
  2. V. V. Sivak,
  3. A. Lingenfelter,
  4. S. Shankar,
  5. and M. H. Devoret
We present a new quantum-limited Josephson-junction-based 3-wave-mixing parametric amplifier, the SNAIL Parametric Amplifier (SPA), which uses an array of SNAILs (Superconducting Nonlinear
Asymmetric Inductive eLements) as the source of tunable nonlinearity. We show how to engineer the nonlinearity over multiple orders of magnitude by varying the physical design of the device. As a function of design parameters, we systematically explore two important amplifier nonidealities that limit dynamic range: the phenomena of gain compression and intermodulation distortion, whose minimization are crucial for high-fidelity multi-qubit readout. Through a comparison with first-principles theory across multiple devices, we demonstrate how to optimize both the nonlinearity and the input-output port coupling of these SNAIL-based parametric amplifiers to achieve higher saturation power, without sacrificing any other desirable characteristics. The method elaborated in our work can be extended to improve all forms of parametrically induced mixing that can be employed for quantum information applications.