Realization of a binary-outcome projection measurement of a three-level superconducting quantum system

  1. Markus Jerger,
  2. Pascal Macha,
  3. Andrés Rosario Hamann,
  4. Yarema Reshitnyk,
  5. Kristinn Juliusson,
  6. and Arkady Fedorov
The ability to determine whether a multi-level quantum system is in a certain state while preserving quantum coherence between all orthorgonal states is necessary to realize binary-outcome
compatible measurements which are, in turn, a prerequisite for testing the contextuality of quantum mechanics. In this paper, we use a three-level superconducting system (a qutrit) coupled to a microwave cavity to explore different regimes of quantum measurement. In particular, we engineer the dispersive shifts of the cavity frequency to be identical for the first and second excited states of the qutrit which allows us to realize a strong projective binary-outcome measurement onto its ground state with a fidelity of 94.3%. Complemented with standard microwave control and low-noise parametric amplification, this scheme can be used to create sets of compatible measurements to reveal the contextual nature of superconducting circuits.

Dispersive Response of a Disordered Superconducting Quantum Metamaterial

  1. Dmitriy S. Shapiro,
  2. Pascal Macha,
  3. Alexey N. Rubtsov,
  4. and Alexey V. Ustinov
We consider a disordered quantum metamaterial formed by an array of superconducting flux qubits coupled to microwave photons in a cavity. We map the system on the Tavis-Cummings model
accounting for the disorder in frequencies of the qubits. The complex transmittance is calculated with the parameters taken from state-of-the-art experiments. We demonstrate that photon phase shift measurements allow to distinguish individual resonances in the metamaterial with up to 100 qubits, in spite of the decoherence spectral width being remarkably larger than the effective coupling constant. Our simulations are in agreement with the results of the recently reported experiment.

Implementation of a Quantum Metamaterial

  1. Pascal Macha,
  2. Gregor Oelsner,
  3. Jan-Michael Reiner,
  4. Michael Marthaler,
  5. Stephan André,
  6. Gerd Schön,
  7. Uwe Huebner,
  8. Hans-Georg Meyer,
  9. Evgeni Il'ichev,
  10. and Alexey V. Ustinov
Manipulating the propagation of electromagnetic waves through sub-wavelength sized artificial structures is the core function of metamaterials. Resonant structures, such as split ring
resonators, play the role of artificial „atoms“ and shape the magnetic response. Superconducting metamaterials moved into the spotlight for their very low ohmic losses and the possibility to tune their resonance frequency by exploiting the Josephson inductance. Moreover, the nonlinear nature of the Josephson inductance enables the fabrication of truly artificial atoms. Arrays of such superconducting quantum two-level systems (qubits) can be used for the implementation of a quantum metamaterial. Here, we perform an experiment in which 20 superconducting flux qubits are embedded into a single microwave resonator. The phase of the signal transmitted through the resonator reveals the collective resonant coupling of up to 8 qubits. Quantum circuits of many artificial atoms based on this proof-of-principle experiment offer a wide range of prospects, from detecting single microwave photons to phase switching, quantum birefringence and superradiant phase transitions.