Probing the TLS Density of States in SiO Films using Superconducting Lumped Element Resonators

  1. S. T. Skacel,
  2. Ch. Kaiser,
  3. S. Wuensch,
  4. H. Rotzinger,
  5. A. Lukashenko,
  6. M. Jerger,
  7. G. Weiss,
  8. M. Siegel,
  9. and A. V. Ustinov
We have investigated dielectric losses in amorphous SiO thin films under operating conditions of superconducting qubits (mK temperatures and low microwave powers). For this purpose,
we have developed a broadband measurement setup employing multiplexed lumped element resonators using a broadband power combiner and a low-noise amplifier. The measured temperature and power dependences of the dielectric losses are in good agreement with those predicted for atomic two-level tunneling systems (TLS). By measuring the losses at different frequencies, we found that the TLS density of states is energy dependent. This had not been seen previously in loss measurements. These results contribute to a better understanding of decoherence effects in superconducting qubits and suggest a possibility to minimize TLS-related decoherence by reducing the qubit operation frequency.

Anisotropic rare-earth spin ensemble strongly coupled to a superconducting resonator

  1. S. Probst,
  2. H. Rotzinger,
  3. S. Wünsch,
  4. P. Jung,
  5. M. Jerger,
  6. M. Siegel,
  7. A. V. Ustinov,
  8. and P. A. Bushev
Interfacing photonic and solid-state qubits within a hybrid quantum architecture offers a promising route towards large scale distributed quantum computing. Ideal candidates for coherent
qubit interconversion are optically active spins magnetically coupled to a superconducting resonator. We report on a cavity QED experiment with magnetically anisotropic Er3+:Y2SiO5 crystals and demonstrate strong coupling of rare-earth spins to a lumped element resonator. In addition, the electron spin resonance and relaxation dynamics of the erbium spins are detected via direct microwave absorption, without aid of a cavity.