Empowering high-dimensional quantum computing by traversing the dual bosonic ladder

  1. Long B. Nguyen,
  2. Noah Goss,
  3. Karthik Siva,
  4. Yosep Kim,
  5. Ed Younis,
  6. Bingcheng Qing,
  7. Akel Hashim,
  8. David I. Santiago,
  9. and Irfan Siddiqi
High-dimensional quantum information processing has emerged as a promising avenue to transcend hardware limitations and advance the frontiers of quantum technologies. Harnessing the
untapped potential of the so-called qudits necessitates the development of quantum protocols beyond the established qubit methodologies. Here, we present a robust, hardware-efficient, and extensible approach for operating multidimensional solid-state systems using Raman-assisted two-photon interactions. To demonstrate its efficacy, we construct a set of multi-qubit operations, realize highly entangled multidimensional states including atomic squeezed states and Schrödinger cat states, and implement programmable entanglement distribution along a qudit array. Our work illuminates the quantum electrodynamics of strongly driven multi-qudit systems and provides the experimental foundation for the future development of high-dimensional quantum applications.

Quantum Computation of Frequency-Domain Molecular Response Properties Using a Three-Qubit iToffoli Gate

  1. Shi-Ning Sun,
  2. Brian Marinelli,
  3. Jin Ming Koh,
  4. Yosep Kim,
  5. Long B. Nguyen,
  6. Larry Chen,
  7. John Mark Kreikebaum,
  8. David I. Santiago,
  9. Irfan Siddiqi,
  10. and Austin J. Minnich
The quantum computation of molecular response properties on near-term quantum hardware is a topic of significant interest. While computing time-domain response properties is in principle
straightforward due to the natural ability of quantum computers to simulate unitary time evolution, circuit depth limitations restrict the maximum time that can be simulated and hence the extraction of frequency-domain properties. Computing properties directly in the frequency domain is therefore desirable, but the circuits require large depth when the typical hardware gate set consisting of single- and two-qubit gates is used. Here, we report the experimental quantum computation of the response properties of diatomic molecules directly in the frequency domain using a three-qubit iToffoli gate, enabling a reduction in circuit depth by a factor of two. We show that the molecular properties obtained with the iToffoli gate exhibit comparable or better agreement with theory than those obtained with the native CZ gates. Our work is among the first demonstrations of the practical usage of a native multi-qubit gate in quantum simulation, with diverse potential applications to the simulation of quantum many-body systems on near-term digital quantum computers.

Programmable Heisenberg interactions between Floquet qubits

  1. Long B. Nguyen,
  2. Yosep Kim,
  3. Akel Hashim,
  4. Noah Goss,
  5. Brian Marinelli,
  6. Bibek Bhandari,
  7. Debmalya Das,
  8. Ravi K. Naik,
  9. John Mark Kreikebaum,
  10. Andrew N. Jordan,
  11. David I. Santiago,
  12. and Irfan Siddiqi
The fundamental trade-off between robustness and tunability is a central challenge in the pursuit of quantum simulation and fault-tolerant quantum computation. In particular, many emerging
quantum architectures are designed to achieve high coherence at the expense of having fixed spectra and consequently limited types of controllable interactions. Here, by adiabatically transforming fixed-frequency superconducting circuits into modifiable Floquet qubits, we demonstrate an XXZ Heisenberg interaction with fully adjustable anisotropy. This interaction model is on one hand the basis for many-body quantum simulation of spin systems, and on the other hand the primitive for an expressive quantum gate set. To illustrate the robustness and versatility of our Floquet protocol, we tailor the Heisenberg Hamiltonian and implement two-qubit iSWAP, CZ, and SWAP gates with estimated fidelities of 99.32(3)%, 99.72(2)%, and 98.93(5)%, respectively. In addition, we implement a Heisenberg interaction between higher energy levels and employ it to construct a three-qubit CCZ gate with a fidelity of 96.18(5)%. Importantly, the protocol is applicable to various fixed-frequency high-coherence platforms, thereby unlocking a suite of essential interactions for high-performance quantum information processing. From a broader perspective, our work provides compelling avenues for future exploration of quantum electrodynamics and optimal control using the Floquet framework.

High-Fidelity Qutrit Entangling Gates for Superconducting Circuits

  1. Noah Goss,
  2. Alexis Morvan,
  3. Brian Marinelli,
  4. Bradley K. Mitchell,
  5. Long B. Nguyen,
  6. Ravi K. Naik,
  7. Larry Chen,
  8. Christian Jünger,
  9. John Mark Kreikebaum,
  10. David I. Santiago,
  11. Joel J. Wallman,
  12. and Irfan Siddiqi
Ternary quantum information processing in superconducting devices poses a promising alternative to its more popular binary counterpart through larger, more connected computational spaces
and proposed advantages in quantum simulation and error correction. Although generally operated as qubits, transmons have readily addressable higher levels, making them natural candidates for operation as quantum three-level systems (qutrits). Recent works in transmon devices have realized high fidelity single qutrit operation. Nonetheless, effectively engineering a high-fidelity two-qutrit entanglement remains a central challenge for realizing qutrit processing in a transmon device. In this work, we apply the differential AC Stark shift to implement a flexible, microwave-activated, and dynamic cross-Kerr entanglement between two fixed-frequency transmon qutrits, expanding on work performed for the ZZ interaction with transmon qubits. We then use this interaction to engineer efficient, high-fidelity qutrit CZ† and CZ gates, with estimated process fidelities of 97.3(1)% and 95.2(3)% respectively, a significant step forward for operating qutrits on a multi-transmon device.

Scalable High-Performance Fluxonium Quantum Processor

  1. Long B. Nguyen,
  2. Gerwin Koolstra,
  3. Yosep Kim,
  4. Alexis Morvan,
  5. Trevor Chistolini,
  6. Shraddha Singh,
  7. Konstantin N. Nesterov,
  8. Christian Jünger,
  9. Larry Chen,
  10. Zahra Pedramrazi,
  11. Bradley K. Mitchell,
  12. John Mark Kreikebaum,
  13. Shruti Puri,
  14. David I. Santiago,
  15. and Irfan Siddiqi Singh
The technological development of hardware heading toward universal fault-tolerant quantum computation requires a large-scale processing unit with high performance. While fluxonium qubits
are promising with high coherence and large anharmonicity, their scalability has not been systematically explored. In this work, we propose a superconducting quantum information processor based on compact high-coherence fluxoniums with suppressed crosstalk, reduced design complexity, improved operational efficiency, high-fidelity gates, and resistance to parameter fluctuations. In this architecture, the qubits are readout dispersively using individual resonators connected to a common bus and manipulated via combined on-chip RF and DC control lines, both of which can be designed to have low crosstalk. A multi-path coupling approach enables exchange interactions between the high-coherence computational states and at the same time suppresses the spurious static ZZ rate, leading to fast and high-fidelity entangling gates. We numerically investigate the cross resonance controlled-NOT and the differential AC-Stark controlled-Z operations, revealing low gate error for qubit-qubit detuning bandwidth of up to 1 GHz. Our study on frequency crowding indicates high fabrication yield for quantum processors consisting of over thousands of qubits. In addition, we estimate low resource overhead to suppress logical error rate using the XZZX surface code. These results promise a scalable quantum architecture with high performance for the pursuit of universal quantum computation.

High-fidelity iToffoli gate for fixed-frequency superconducting qubits

  1. Yosep Kim,
  2. Alexis Morvan,
  3. Long B. Nguyen,
  4. Ravi K. Naik,
  5. Christian Jünger,
  6. Larry Chen,
  7. John Mark Kreikebaum,
  8. David I. Santiago,
  9. and Irfan Siddiqi
The development of noisy intermediate-scale quantum (NISQ) devices has extended the scope of executable quantum circuits with high-fidelity single- and two-qubit gates. Equipping NISQ
devices with three-qubit gates will enable the realization of more complex quantum algorithms and efficient quantum error correction protocols with reduced circuit depth. Several three-qubit gates have been implemented for superconducting qubits, but their use in gate synthesis has been limited due to their low fidelity. Here, using fixed-frequency superconducting qubits, we demonstrate a high-fidelity iToffoli gate based on two-qubit interactions, the so-called cross-resonance effect. As with the Toffoli gate, this three-qubit gate can be used to perform universal quantum computation. The iToffoli gate is implemented by simultaneously applying microwave pulses to a linear chain of three qubits, revealing a process fidelity as high as 98.26(2)%. Moreover, we numerically show that our gate scheme can produce additional three-qubit gates which provide more efficient gate synthesis than the Toffoli and Toffoli gates. Our work not only brings a high-fidelity iToffoli gate to current superconducting quantum processors but also opens a pathway for developing multi-qubit gates based on two-qubit interactions.

Arbitrary controlled-phase gate on fluxonium qubits using differential ac-Stark shifts

  1. Haonan Xiong,
  2. Quentin Ficheux,
  3. Aaron Somoroff,
  4. Long B. Nguyen,
  5. Ebru Dogan,
  6. Dario Rosenstock,
  7. Chen Wang,
  8. Konstantin N. Nesterov,
  9. Maxim G. Vavilov,
  10. and Vladimir E. Manucharyan
Large scale quantum computing motivates the invention of two-qubit gate schemes that not only maximize the gate fidelity but also draw minimal resources. In the case of superconducting
qubits, the weak anharmonicity of transmons imposes profound constraints on the gate design, leading to increased complexity of devices and control protocols. Here we demonstrate a resource-efficient control over the interaction of strongly-anharmonic fluxonium qubits. Namely, applying an off-resonant drive to non-computational transitions in a pair of capacitively-coupled fluxoniums induces a ZZ-interaction due to unequal ac-Stark shifts of the computational levels. With a continuous choice of frequency and amplitude, the drive can either cancel the static ZZ-term or increase it by an order of magnitude to enable a controlled-phase (CP) gate with an arbitrary programmed phase shift. The cross-entropy benchmarking of these non-Clifford operations yields a sub 1% error, limited solely by incoherent processes. Our result demonstrates the advantages of strongly-anharmonic circuits over transmons in designing the next generation of quantum processors.

Fast logic with slow qubits: microwave-activated controlled-Z gate on low-frequency fluxoniums

  1. Quentin Ficheux,
  2. Long B. Nguyen,
  3. Aaron Somoroff,
  4. Haonan Xiong,
  5. Konstantin N. Nesterov,
  6. Maxim G. Vavilov,
  7. and Vladimir E. Manucharyan
We demonstrate a controlled-Z gate between capacitively coupled fluxonium qubits with transition frequencies 72.3 MHz and 136.3 MHz. The gate is activated by a 61.6 ns long pulse at
the frequency between non-computational transitions |10⟩−|20⟩ and |11⟩−|21⟩, during which the qubits complete only 4 and 8 Larmor periods, respectively. The measured gate error of (8±1)×10−3 is limited by decoherence in the non-computational subspace, which will likely improve in the next generation devices. Although our qubits are about fifty times slower than transmons, the two-qubit gate is faster than microwave-activated gates on transmons, and the gate error is on par with the lowest reported. Architectural advantages of low-frequency fluxoniums include long qubit coherence time, weak hybridization in the computational subspace, suppressed residual ZZ-coupling rate (here 46 kHz), and absence of either excessive parameter matching or complex pulse shaping requirements.

Electron shelving of a superconducting artificial atom

  1. Nathanaël Cottet,
  2. Haonan Xiong,
  3. Long B. Nguyen,
  4. Yen-Hsiang Lin,
  5. and Vladimir E. Manucharyan
Interfacing stationary qubits with propagating photons is a fundamental problem in quantum technology. Cavity quantum electrodynamics (CQED) invokes a mediator degree of freedom in
the form of a far-detuned cavity mode, the adaptation of which to superconducting circuits (cQED) proved remarkably fruitful. The cavity both blocks the qubit emission and it enables a dispersive readout of the qubit state. Yet, a more direct (cavityless) interface is possible with atomic clocks, in which an orbital cycling transition can scatter photons depending on the state of a hyperfine or quadrupole qubit transition. Originally termed „electron shelving“, such a conditional fluorescence phenomenon is the cornerstone of many quantum information platforms, including trapped ions, solid state defects, and semiconductor quantum dots. Here we apply the shelving idea to circuit atoms and demonstrate a conditional fluorescence readout of fluxonium qubit placed inside a matched one-dimensional waveguide. Cycling the non-computational transition between ground and third excited states produces a microwave photon every 91 ns conditioned on the qubit ground state, while the qubit coherence time exceeds 50 us. The readout has a built-in quantum non-demolition property, allowing over 100 fluorescence cycles in agreement with a four-level optical pumping model. Our result introduces a resource-efficient alternative to cQED. It also adds a state-of-the-art quantum memory to the growing toolbox of waveguide QED.

The superconducting quasicharge qubit

  1. Ivan V. Pechenezhskiy,
  2. Raymond A. Mencia,
  3. Long B. Nguyen,
  4. Yen-Hsiang Lin,
  5. and Vladimir E. Manucharyan
The non-dissipative non-linearity of a Josephson junction converts macroscopic superconducting circuits into artificial atoms, enabling some of the best controlled quantum bits (qubits)
today. Three fundamental types of superconducting qubits are known, each reflecting a distinct behavior of quantum fluctuations in a Cooper pair condensate: single charge tunneling (charge qubit), single flux tunneling (flux qubit), and phase oscillations (phase qubit). Yet, the dual nature of charge and flux suggests that circuit atoms must come in pairs. Here we introduce the missing one, named „blochnium“. It exploits a coherent insulating response of a single Josephson junction that emerges from the extension of phase fluctuations beyond the 2π-interval. Evidence for such effect was found in an out-of-equilibrium dc-transport through junctions connected to high-impedance leads, although a full consensus is absent to date. We shunt a weak junction with an exceptionally high-value inductance — the key technological innovation behind our experiment — and measure the rf-excitation spectrum as a function of external magnetic flux through the resulting loop. The junction’s insulating character manifests by the vanishing flux-sensitivity of the qubit transition between the ground and the first excited states, which nevertheless rapidly recovers for transitions to higher energy states. The spectrum agrees with a duality mapping of blochnium onto transmon, which replaces the external flux by the offset charge and introduces a new collective quasicharge variable in place of the superconducting phase. Our result unlocks the door to an unexplored regime of macroscopic quantum dynamics in ultrahigh-impedance circuits, which may have applications to quantum computing and quantum metrology of direct current.