Superconducting Qubits Above 20 GHz Operating over 200 mK

  1. Alexander Anferov,
  2. Shannon P. Harvey,
  3. Fanghui Wan,
  4. Jonathan Simon,
  5. and David I. Schuster
Current state-of-the-art superconducting microwave qubits are cooled to extremely low temperatures to avoid sources of decoherence. Higher qubit operating temperatures would significantly
increase the cooling power available, which is desirable for scaling up the number of qubits in quantum computing architectures and integrating qubits in experiments requiring increased heat dissipation. To operate superconducting qubits at higher temperatures, it is necessary to address both quasiparticle decoherence (which becomes significant for aluminum junctions above 160 mK) and dephasing from thermal microwave photons (which are problematic above 50 mK). Using low-loss niobium trilayer junctions, which have reduced sensitivity to quasiparticles due to niobium’s higher superconducting transition temperature, we fabricate transmons with higher frequencies than previously studied, up to 24 GHz. We measure decoherence and dephasing times of about 1 us, corresponding to average qubit quality factors of approximately 105, and find that decoherence is unaffected by quasiparticles up to 1 K. Without relaxation from quasiparticles, we are able to explore dephasing from purely thermal sources, finding that our qubits can operate up to approximately 250 mK while maintaining similar performance. The thermal resilience of these qubits creates new options for scaling up quantum processors, enables hybrid quantum experiments with high heat dissipation budgets, and introduces a material platform for even higher-frequency qubits.

Manybody Interferometry of Quantum Fluids

  1. Gabrielle Roberts,
  2. Andrei Vrajitoarea,
  3. Brendan Saxberg,
  4. Margaret G. Panetta,
  5. Jonathan Simon,
  6. and David I. Schuster
Characterizing strongly correlated matter is an increasingly central challenge in quantum science, where structure is often obscured by massive entanglement. From semiconductor heterostructures
and 2D materials to synthetic atomic, photonic and ionic quantum matter, progress in preparation of manybody quantum states is accelerating, opening the door to new approaches to state characterization. It is becoming increasingly clear that in the quantum regime, state preparation and characterization should not be treated separately – entangling the two processes provides a quantum advantage in information extraction. From Loschmidt echo to measure the effect of a perturbation, to out-of-time-order-correlators (OTOCs) to characterize scrambling and manybody localization, to impurity interferometry to measure topological invariants, and even quantum Fourier transform-enhanced sensing, protocols that blur the distinction between state preparation and characterization are becoming prevalent. Here we present a new approach which we term ‚manybody Ramsey interferometry‘ that combines adiabatic state preparation and Ramsey spectroscopy: leveraging our recently-developed one-to-one mapping between computational-basis states and manybody eigenstates, we prepare a superposition of manybody eigenstates controlled by the state of an ancilla qubit, allow the superposition to evolve relative phase, and then reverse the preparation protocol to disentangle the ancilla while localizing phase information back into it. Ancilla tomography then extracts information about the manybody eigenstates, the associated excitation spectrum, and thermodynamic observables. This work opens new avenues for characterizing manybody states, paving the way for quantum computers to efficiently probe quantum matter.

Improved Coherence in Optically-Defined Niobium Trilayer Junction Qubits

  1. Alexander Anferov,
  2. Kan-Heng Lee,
  3. Fang Zhao,
  4. Jonathan Simon,
  5. and David I. Schuster
Niobium offers the benefit of increased operating temperatures and frequencies for Josephson junctions, which are the core component of superconducting devices. However existing niobium
processes are limited by more complicated fabrication methods and higher losses than now-standard aluminum junctions. Combining recent trilayer fabrication advancements, methods to remove lossy dielectrics and modern superconducting qubit design, we revisit niobium trilayer junctions and fabricate all-niobium transmons using only optical lithography. We characterize devices in the microwave domain, measuring coherence times up to 62 μs and an average qubit quality factor above 105: much closer to state-of-the-art aluminum-junction devices. We find the higher superconducting gap energy also results in reduced quasiparticle sensitivity above 0.16 K, where aluminum junction performance deteriorates. Our low-loss junction process is readily applied to standard optical-based foundry processes, opening new avenues for direct integration and scalability, and paves the way for higher-temperature and higher-frequency quantum devices.

Chiral Cavity Quantum Electrodynamics

  1. John Clai Owens,
  2. Margaret G. Panetta,
  3. Brendan Saxberg,
  4. Gabrielle Roberts,
  5. Srivatsan Chakram,
  6. Ruichao Ma,
  7. Andrei Vrajitoarea,
  8. Jonathan Simon,
  9. and David Schuster
Cavity quantum electrodynamics, which explores the granularity of light by coupling a resonator to a nonlinear emitter, has played a foundational role in the development of modern quantum
information science and technology. In parallel, the field of condensed matter physics has been revolutionized by the discovery of underlying topological robustness in the face of disorder, often arising from the breaking of time-reversal symmetry, as in the case of the quantum Hall effect. In this work, we explore for the first time cavity quantum electrodynamics of a transmon qubit in the topological vacuum of a Harper-Hofstadter topological lattice. To achieve this, we assemble a square lattice of niobium superconducting resonators and break time-reversal symmetry by introducing ferrimagnets before coupling the system to a single transmon qubit. We spectroscopically resolve the individual bulk and edge modes of this lattice, detect vacuum-stimulated Rabi oscillations between the excited transmon and each mode, and thereby measure the synthetic-vacuum-induced Lamb shift of the transmon. Finally, we demonstrate the ability to employ the transmon to count individual photons within each mode of the topological band structure. This work opens the field of chiral quantum optics experiment, suggesting new routes to topological many-body physics and offering unique approaches to backscatter-resilient quantum communication.

A tunable High-Q millimeter wave cavity for hybrid circuit and cavity QED experiments

  1. Aziza Suleymanzade,
  2. Alexander Anferov,
  3. Mark Stone,
  4. Ravi K. Naik,
  5. Jonathan Simon,
  6. and David Schuster
The millimeter wave (mm-wave) frequency band provides exciting prospects for quantum science and devices, since many high-fidelity quantum emitters, including Rydberg atoms, molecules
and silicon vacancies, exhibit resonances near 100 GHz. High-Q resonators at these frequencies would give access to strong interactions between emitters and single photons, leading to rich and unexplored quantum phenomena at temperatures above 1K. We report a 3D mm-wave cavity with a measured single-photon internal quality factor of 3×107 and mode volume of 0.14×λ3 at 98.2 GHz, sufficient to reach strong coupling in a Rydberg cavity QED system. An in-situ piezo tunability of 18 MHz facilitates coupling to specific atomic transitions. Our unique, seamless and optically accessible resonator design is enabled by the realization that intersections of 3D waveguides support tightly confined bound states below the waveguide cutoff frequency. Harnessing the features of our cavity design, we realize a hybrid mm-wave and optical cavity, designed for interconversion and entanglement of mm-wave and optical photons using Rydberg atoms.

Millimeter-Wave Four-Wave Mixing via Kinetic Inductance for Quantum Devices

  1. Alexander Anferov,
  2. Aziza Suleymanzade,
  3. Andrew Oriani,
  4. Jonathan Simon,
  5. and David I. Schuster
Millimeter-wave superconducting devices offer a platform for quantum experiments at temperatures above 1 K, and new avenues for studying light-matter interactions in the strong coupling
regime. Using the intrinsic nonlinearity associated with kinetic inductance of thin film materials, we realize four-wave mixing at millimeter-wave frequencies, demonstrating a key component for superconducting quantum systems. We report on the performance of niobium nitride resonators around 100 GHz, patterned on thin (20-50 nm) films grown by atomic layer deposition, with sheet inductances up to 212 pH/square and critical temperatures up to 13.9 K. For films thicker than 20 nm, we measure quality factors from 1-6×104, likely limited by two-level systems. Finally we measure degenerate parametric conversion for a 95 GHz device with a forward efficiency up to +16 dB, paving the way for the development of nonlinear quantum devices at millimeter-wave frequencies.

Quarter-Flux Hofstadter Lattice in Qubit-Compatible Microwave Cavity Array

  1. Clai Owens,
  2. Aman LaChapelle,
  3. Brendan Saxberg,
  4. Brandon Anderson,
  5. Ruichao Ma,
  6. Jonathan Simon,
  7. and David I. Schuster
. There is"]an active effort to develop synthetic materials where the microscopic dynamics and ordering arising from the interplay of topology and interaction may be directly explored. In this work we demonstrate a novel architecture for exploration of topological matter constructed from tunnel-coupled, time-reversalbroken microwave cavities that are both low loss and compatible with Josephson junction-mediated interactions [2]. Following our proposed protocol [3] we implement a square lattice Hofstadter model at a quarter flux per plaquette ({\alpha} = 1/4), with time-reversal symmetry broken through the chiral Wannier-orbital of resonators coupled to Yttrium-Iron-Garnet spheres. We demonstrate site-resolved spectroscopy of the lattice, time-resolved dynamics of its edge channels, and a direct measurement of the dispersion of the edge channels. Finally, we demonstrate the flexibility of the approach by erecting a tunnel barrier investigating dynamics across it. With the introduction of Josephson-junctions to mediate interactions between photons, this platform is poised to explore strongly correlated topological quantum science for the first time in a synthetic system.

Hamiltonian Tomography of Photonic Lattices

  1. Ruichao Ma,
  2. Clai Owens,
  3. Aman LaChapelle,
  4. David I. Schuster,
  5. and Jonathan Simon
In this letter we introduce a novel approach to Hamiltonian tomography of non-interacting tight-binding photonic lattices. To begin with, we prove that the matrix element of the low-energy
effective Hamiltonian between sites i and j may be obtained directly from Sij(ω), the (suitably normalized) two-port measurement between sites i and j at frequency ω. This general result enables complete characterization of both on-site energies and tunneling matrix elements in arbitrary lattice networks by spectroscopy, and suggests that coupling between lattice sites is actually a topological property of the two-port spectrum. We further provide extensions of this technique for measurement of band-projectors in finite, disordered systems with good flatness ratios, and apply the tool to direct real-space measurement of the Chern number. Our approach demonstrates the extraordinary potential of microwave quantum circuits for exploration of exotic synthetic materials, providing a clear path to characterization and control of single-particle properties of Jaynes-Cummings-Hubbard lattices. More broadly, we provide a robust, unified method of spectroscopic characterization of linear networks from photonic crystals to microwave lattices and everything in-between.

Engineering topological materials in microwave cavity arrays

  1. Brandon M. Anderson,
  2. Ruichao Ma,
  3. Clai Owens,
  4. David I. Schuster,
  5. and Jonathan Simon
We present a scalable architecture for the exploration of interacting topological phases of photons in arrays of microwave cavities, using established techniques from cavity and circuit
quantum electrodynamics. A time-reversal symmetry breaking (non-reciprocal) flux is induced by coupling the microwave cavities to ferrites, allowing for the production of a variety of topological band structures including the α=1/4 Hofstadter model. Effective photon-photon interactions are included by coupling the cavities to superconducting qubits, and are sufficient to produce a ν=1/2 bosonic Laughlin puddle. We demonstrate by exact diagonalization that this architecture is robust to experimentally achievable levels of disorder. These advances provide an exciting opportunity to employ the quantum circuit toolkit for the exploration of strongly interacting topological materials.